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Summary

In designing offshore structures like oil rigs or FPSO’s (Floating Production, Storage
and Offloading units) one of the important aspects is the kind of waves that the
structure will encounter and the kind of loads that they will cause. Nowadays this
kind of questions is answered routinely by linear potential codes. Some of those codes
apply higher-order corrections. In the final stages of the design the results are checked
on model scale in hydrodynamic model test basins.

To increase the capabilities of the computer calculations a computer code for fully
nonlinear potential calculations with water waves and floating bodies had been devel-
oped earlier. It uses a boundary integral equation formulation, which is discretized to
give a higher order panel method. In the current thesis this computer code has been
applied to diffraction calculations of regular waves of moderate steepness incident on
fixed, surface piercing cylinders with circular and rectangular cross-sections. In ad-
dition it has also been applied to diffraction calculations of regular waves with small
steepness incident on free floating spheres. For the fixed cylinders comparison was
made with experimental values for the maximum wave elevation at several distances
from and several angles to the cylinders. The agreement between the calculations and
the experiments was fairly good. The absorbing boundary conditions will benefit from
a larger domain size however, and the resolution in the calculations for the highest
waves was not sufficient to make definite statements about the breaking behaviour.
Details in the diffraction solution near the fixed cylinders were validated with laser-
sheet measurements of the free surface. The calculations with the floating sphere
were compared to linear theory: added mass and damping coefficients for the free
decay tests, and amplitude and phase of the heave and surge motions together with
the mean horizontal drift force for a range of incoming wave frequencies. Considering
the difficulties in resolving the waves with the higher frequencies and the limited ca-
pabilities of the absorbing boundary conditions because of the small domain size, the
results were satisfactory, although there remain some questions. Suggestions are given
to widen the current bottlenecks. To be able to run these calculations on massively
parallel processing computers, the computer code, which was originally optimised
for vector computers, was parallelised using Open MP directives. This resulted in a
maximum speed up of 40 using 60 processors on a Silicon Graphics Origin 3800 for a
problem with a grid consisting of 9000 panels.





Samenvatting

Voor het ontwerp van offshore installaties zoals boorplatformen en FPSO’s (Floating
Production, Storage and Offloading units, oftewel drijvende productie, opslag en af-
voer eenheden) is een van de belangrijke aspecten het soort golven dat de installatie
zal tegenkomen en de belastingen die deze zullen veroorzaken. Tegenwoordig worden
dit soort vragen routinematig beantwoord met behulp van computerprogramma’s ge-
baseerd op lineaire potentiaal theorie. Een aantal van deze programma’s past hogere
orde correcties op de lineaire theorie toe. In de eindfase van het ontwerp worden de
resultaten gecontroleerd op modelschaal in grote “zwembaden” met golfslag, bijvoor-
beeld bij het MARIN.

Om de mogelijkheden van deze computerberekeningen te vergroten was al eerder
een computerprogramma ontwikkeld gebaseerd op de volledig niet-lineaire potentiaal
theorie voor berekeningen aan watergolven en drijvende lichamen. Dit programma
gebruikt een randintegraal formulering die zodanig is gediscretiseerd dat een hoge-
re orde panelenmethode ontstond. In dit proefschrift is dit computerprogramma,
genaamd HYPAN, toegepast op diffractie berekeningen voor reguliere golven van
gematigde steilheid invallend op vaste, wateroppervlak doorsnijdende cilinders met
cirkelvormige en met rechthoekige dwarsdoorsnedes. Bovendien is het toegepast op
diffractie berekeningen voor reguliere golven van lage steilheid invallend op vrij drij-
vende bollen. De resultaten voor de vaste cilinders zijn vergeleken met metingen van
de maximale golfhoogte op verschillende afstanden en hoeken ten opzichte van de
cilinders. De overeenkomst tussen de berekeningen en de metingen is gunstig, hoewel
de absorberende randvoorwaarden zouden kunnen profiteren van een groter domein
en de resolutie van de berekeningen voor de hoogste golven niet voldoende was om
definitieve uitspraken te doen over het al dan niet breken van de golven. Enige de-
tails in het golfpatroon rond de vaste cilinders zijn gevalideerd met metingen aan het
wateroppervlak door middel van laser belichting van verticale dwarsdoorsnedes. De
berekeningen aan de drijvende bol zijn vergeleken met de lineaire theorie: de toege-
voegde massa en demping coëfficiënten voor de uitdemp testen, en de amplitude en
de fase van de verticale en van de horizontale bewegingen samen met de gemiddelde
horizontale driftkracht voor een reeks van inkomende golffrequenties. Rekening hou-
dend met de moeilijkheden om de golven met de hogere frequenties met voldoende
resolutie weer te geven en de beperkte prestaties van de absorberende randvoorwaar-
den als gevolg van de kleine domein grootte, zijn de resultaten bevredigend, alhoewel
er nog enige vragen overblijven. Suggesties om de grootste beperkingen uit de weg
te ruimen worden gegeven. Om deze berekeningen op massief parallelle computers te
kunnen doen, is de computercode, die oorspronkelijk was geoptimaliseerd voor vector



supercomputers, geparallelliseerd, gebruikmakend van de Open MP methode. Dit
heeft geresulteerd in een maximale versnelling met een factor 40 wanneer er 60 pro-
cessoren van een Silicon Graphics Origin 3800 supercomputer worden gebruikt voor
een probleem met een rekenrooster bestaand uit 9000 panelen.
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Chapter 1

Introduction

1.1 The motivation for the project

In designing offshore structures like oil rigs or FPSO’s (Floating Production, Storage
and Offloading units) one of the important aspects is the kind of waves that the
structure will encounter and the kind of loads that they will cause. Given the incoming
wave field, a consequence of a certain sea state, you can try to simulate it in a wave
basin or you can try to calculate it with numerical methods. Unlike computations, the
equipment and the setup of model experiments is very expensive and not very well-
suited for trial and error. Especially in the early design phase, it is very important to
have a rapid trial and error cycle. For numerical methods the most widely used at the
moment are linear models, potential theory but with a linearised free surface condition
and body conditions, working in the frequency domain. More advanced codes include
higher-order corrections. These linear calculations in the frequency domain are often
referred to as diffraction calculations: an incoming wave is diffracted or scattered by
an object in all directions. The same terminology is used for the nonlinear variants
in the time domain.

Especially for large body motions and frequency interactions linear theory is not
very accurate or applicable. An example of a practical application that needs non-
linear theory is the mooring of vessels in sea states containing both long and smaller
wavelengths. Near the oilfields at the coast of West Africa there are no harbours.
To get the oil into tankers to move it elsewhere, there are offloading units placed
offshore. So the tanker has to be moored at open sea. The slowly oscillating wave
drift forces associated with the incoming wave groups can excite the mooring system
at its resonant frequency.

A second example is a semi submersible. The pillars connecting the super structure
to the subsea structure are exposed to the incoming waves. Relevant questions include:
will the resulting wave pattern reach the super structure and what are the impact
loads on the pillars.

A third example is an FPSO in survival conditions. An FPSO is a ship like
structure floating above an oil well to pump up the oil while storing it until it can
be transferred to a shuttle tanker. The station keeping is done by using mooring
lines or by using dynamic positioning using thrusters. An FPSO cannot run away

1



2 1. Introduction

from a storm, so it has to withstand even the most extreme ones. In the most severe
conditions it can stop producing oil but it at least has to survive. In those survival
conditions you typically have waves that are large compared to the ship giving rise
to large ship motions. Although the waves are very high they do not need to be very
steep because of their long wavelengths. The most interesting cases are where part
of the ship comes out of the water, for example the bow. These scenarios will almost
certainly include local wave breaking phenomena.

The frequency effects and the large ship motions can be dealt with by going to
fully nonlinear potential theory. Potential theory however, cannot handle re-entrant
breaking phenomena. For that one needs a more complete formulation that can
describe rotational flow with very good free surface tracking. This means a Navier-
Stokes model with for example a volume of fluid approach to capture the free surface.
But even when the wildest scenarios cannot be calculated with codes based on fully
nonlinear potential theory, such codes can still be used to validate the more exotic
codes in their milder regions. Potential theory is relatively well understood, it can
be a valuable reference for Navier-Stokes codes who need a number of not so well
understood approximations (turbulent models and the like). And very important:
potential theory is much less computational intensive. A higher order fully nonlinear
potential code is very suitable for very accurate calculations. For Navier-Stokes codes
being robust is not so big a problem, being accurate is. The window of application
between linear methods and breaking waves is relatively small, the usefulness is largely
determined by the relative computational cost. The two dimensional potential theory
codes have already proven their value.

There was, and still is, a clear need for better nonlinear tools for three-dimensional
problems. In the middle of the 1980s Zandbergen started the current project to create
a three-dimensional fully nonlinear potential code.

1.2 The history of the project

In 1984 Romate started the development of a three-dimensional fully nonlinear panel
method to calculate water waves. In 1989 he finished his PhD. HYPAN (HYdrody-
namic PANel method), as he called his computer program, was able to accurately cal-
culate linear and moderately nonlinear waves. It was one of the first three-dimensional
fully nonlinear methods for calculating water waves. He did the work at Delft Hy-
draulics. He was succeeded by two new PhD students: Van Daalen and Broeze.
Broeze continued the work at Delft Hydraulics, especially focusing on the calculation
of very high nonlinear waves. Van Daalen started his work at MARIN, where he was
supposed to implement floating bodies. In 1993 both finished their thesis. Broeze
had been able to calculate very high regular waves and also a very large part of the
breaking process of a wave. Van Daalen worked out the algorithm for the free-floating
body and implemented a two-dimensional version of it. He did damping and radia-
tion problems. Their successors were De Haas at Delft Hydraulics and Berkvens at
MARIN. De Haas concentrated his work on domain decomposition in order to make
very large calculations feasible. When he finished his PhD in 1997 he had imple-
mented the domain decomposition in two and in three dimensions. This algorithm
worked very efficiently but because of the way HYPAN handles the network inter-
sections between the domains the accuracy was less than we were used to. Berkvens
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had to extend the two-dimensional floating body algorithm of Van Daalen to three
dimensions. He succeeded in calculating the damping and radiation problems of a
sphere in three dimensions. His PhD was finished in 1998.

1.3 The current sub-project

The current phase of the project started in 1998 when the current author and Egger-
mont started their PhD project at MARIN and Delft Hydraulics respectively. After
the two diverted versions at MARIN and Delft Hydraulics were merged together there
was one code which could handle both domain decomposition and freely floating bod-
ies. Eggermont then took up the problem of the intersections, to make domain decom-
position a more useful tool and to enhance the flexibility in constructing grids. The
current author, together with Eggermont, worked on practical diffraction calculations.
First on some two-dimensional problem, and after that a three-dimensional cylinder
in waves was considered as part of a comparative study. The acquired know-how was
then used to put the desired freely floating object into waves.

1.4 A glimpse of the alternatives

One can look at water at many different levels of sophistication. If one assumes
incompressible water and rotational flow, the flow field can be obtained by solving
the Laplace equation. For waves on the free surface one can linearise with respect to
the amplitude. Within this linear approach it is possible to write a frequency domain
code which only uses unknowns on the surface of the object, for example a ship in deep
water. These codes are the workhorse of shipbuilding related hydrodynamic codes.
Practical ship simulations can be run on a desktop PC. Classically these frequency
domain codes are programmed using constant panel strengths. This gives a lot of
flexibility in the construction of a grid: one can use an unstructured approach where
ever that is considered to be convenient. The main disadvantage is the accuracy: it
is not a consistent discretisation scheme. Instead of a frequency domain code one can
also write a time domain code. It is possible to include the free surface condition
in the Green function. Such a time domain approach is more general, but also less
convenient than a frequency domain approach.

In an attempt to include some of the nonlinear effects associated with large mo-
tions, a so-called Froude-Krylov technique is introduced, see e.g. [6]. Instead of holding
the body fixed as appropriate in a completely linear method, one takes the instan-
taneous position of the object in the instantaneous position of the free surface to
calculate the undisturbed excitation forces. The diffraction forces are still calculated
for the mean body position as in standard linear theory. For an attempt to quantify
the effect of instead calculating the diffraction for the instantaneous body position
see [17]. The linear frequency domain codes can be extended to include some of the
nonlinear frequency interactions. Instead of making a linear approximation to the
free surface and the body boundary conditions in time domain codes, one can also
make a higher order approximation, with a relatively small increase in computational
effort. Within the potential theory framework the most sophisticated approach is to
use the fully nonlinear boundary conditions. This means that you have to track the
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free surface and update your geometry related influence coefficients every time step,
which is very computationally intensive. This is the approach used in the current
thesis.

If one wants to allow for viscous effects or irrotational flow, potential theory is
no longer applicable. Then the Navier-Stokes equations are needed. Again these
equations can be used at different levels of sophistication. On the one end there
is the complete direct numerical simulation of the Navier-Stokes equations which is
very, very computationally intensive, and on the other end there is a very rough
discretisation with emphasis on inertial effects which still takes a lot of computation
time. One of the issues is how to capture the free surface. One of the promising
methods is the so-called volume of fluid method, see for example [7]. For green
water simulations, where the effects of waves plunging on the deck of the ship are
investigated, you really need a method that can capture an arbitrary free surface
such as the VOF methods. The disadvantage of methods that can deal with an
arbitrary free surface is that they often have a relatively high dissipation.

Nowadays several researchers have developed fully nonlinear potential methods
for three-dimensional calculations with fixed or floating bodies. The computational
demands and the proper treatment of the nonlinear instabilities are problematic for all
of them. Ferrant was the first one to do precise calculations for a vertical cylinder in
waves [8, 9, 10]. He used a boundary element method with triangular linear elements
and has paid a lot of attention to be able to run it on a workstation. Because of
the triangular elements his code is a little bit more flexible in the choice of the grid.
He has worked on more or less unstructured grids, but the accuracy proved to be a
problem [11]. Tanizawa [28] proposed a three-dimensional fully nonlinear boundary
element method that included a proper treatment of a freely floating body using the
body boundary condition presented in chapter 2, but he only presented results of a
two-dimensional version. A three-dimensional version was presented by him and two
others in [27]. Their calculations included damping and forced oscillation tests, but
the fully nonlinear description of the free surface was only validated for linear waves.

1.5 The current thesis

The main emphasis of this PhD project was to get a practical diffraction calculation
running of a (free) floating object. Because of available validation material we started
with a cylinder kept fixed in regular waves. This is described in chapter 3. After
we gained confidence in that setup we could apply it to a floating object. With this
setup improvements on results obtained by Berkvens for the free damping case were
possible. And of course, now excitation calculations were possible. These subjects are
described in chapter 4. Halfway the PhD project the supercomputer that we used was
upgraded from a vector machine to a massively parallel machine. Our porting efforts
are described in chapter 5, together with some related issues. The bottlenecks we
encountered during the whole project gave us valuable insight in the future prospects
of this approach. This is put to paper in chapter 6.

But before all that, we first introduce, in the next chapter, the physics, the math-
ematics, and the numerics of the problem at hand. This ends the first chapter.



Chapter 2

Physics, mathematics and
numerics

HYPAN has already been described in five different PhD theses [25, 3, 5, 16, 2]. The
following description will therefore first focus on creating a basic understanding, for
the details the reader should consult either the previous theses or the program source
code. Following that, the aspects most relevant to the current thesis are given a more
complete treatment. There is a section on the grid topology to illustrate the resulting
constraints. Another section explains the new grid motion around the floating body.
The pressure damping zone that is new to HYPAN is treated in a section about the
absorbing boundary conditions.

2.1 Basic presentation of the method

2.1.1 Flow field

We only consider irrotational motion of the water, the velocity field can therefore be
written as the gradient of a potential:

�v = �∇φ (2.1)

In addition we consider the water to be incompressible, this implies that the divergence
of the flow field vanishes. Combining that with the previous equation we get a Laplace
equation for the velocity potential:

∇2φ = 0 (2.2)

Such a Laplace equation can be transformed into a boundary integral equation:

Ω
4π

φ(�x) =
∮

S

[
∂φ

∂n
(�x ′)G(�x, �x ′) − φ(�x ′)

∂

∂n
G(�x, �x ′)

]
dSx′ (2.3)

with
G(�x, �x ′) =

1
4π ‖ �x − �x ′‖ (2.4)

5



6 2. Physics, mathematics and numerics

and

Ω = solid angle =




4π �x inside S
2π �x on smooth part of S
0 �x outside S

(2.5)

Using this boundary integral equation we can determine φ everywhere when given φ
and φn on S. Even better, we have for all �x on S one equation and two unknowns.
This means that if we know the position of S and on any part of S either φ or φn, we
can solve for the remaining φn’s and φ ’s. For the different parts of S we can have the
following boundary conditions. The position of the bottom of the domain is known and
stationary. On this known surface Sbot we prescribe a zero normal velocity, φn = 0,
to state that the bottom is impenetrable. If the domain is surrounded by walls, the
same is true for the lateral boundaries. When some of those walls are moving, the
position and the normal velocity of that wall are prescribed as a function of time.
When the lateral boundaries are artificial we call them input output boundaries, SIO .
The position of these boundaries is arbitrary and a convenient choice is made. On
these boundaries φ or φn can be prescribed, depending on whether there are incoming
waves and/or absorbing boundary conditions like a Sommerfeld radiation condition.
The most important boundary is the free surface. Its position and the value of the
velocity potential on it depend on the dynamics of the problem.

2.1.2 Time dependence

It is time to write down the dynamics of the problem. The material time derivative
of the momentum of a water particle is determined by the local pressure gradient
together with the gravitational force:

D(ρ�v)
Dt

= −�∇p − ρgẑ (2.6)

For an incompressible fluid in irrotational motion satisfying this equation everywhere
in fluid is equivalent to satisfying

�∇
(

φt +
1
2

(∇φ)2 +
p

ρ
+ gz

)
= 0 (2.7)

and this is again equivalent to

φt +
1
2

(∇φ)2 +
p − p0

ρ
+ g (z − z0) = B(t) (2.8)

Here B(t) is an arbitrary constant that does not need to be constant in time. By
putting B(t) to 0 for all t we make sure that if the water stays at rest φt will vanish
for all t. The dynamics represented by this Bernoulli equation determines φt on the
free surface. Integration in time of the position of and the potential in all the points on
the free surface gives us then the new positions on and the new values of the potential
on the free surface at the next time level. Next we solve the Laplace equation to give
us φn on the free surface, which gives us, together with φ for the tangential velocities,
the total velocity in all points on the free surface. This enables us to calculate the
new φt and to go for another round.
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2.1.3 Floating body boundary condition

A body in forced motion is just like a moving wall from a boundary condition point of
view. If a body is free to negotiate its movements with the water with only external
forces like gravitation and perhaps a mooring prescribed, we call it a floating body.
As the word negotiate suggests, the boundary condition for a floating body is not so
much a prescription as more a set of constraints to which one has to find a solution.
Let us have a look at those constraints. First we have the equation of translational
motion of the centre of mass of the body

d

dt
(�P ) = �F (2.9)

m�̇vb = �F (2.10)

�ab = m−1 �F (2.11)

and the equation of rotational motion around that centre of mass

d

dt
(�L) = �N (2.12)

d

dt
(Ī · �ω) = �N (2.13)

= Ī · �̇ω + �ω × (Ī · �ω) = �N (2.14)

�̇ω = Ī−1( �N − �ω × (Ī · �ω)) (2.15)

The forces and the moments in the right-hand sides of the previous equations follow
from

�F = −
∫

S

n̂p dS − mgẑ + �Fext (2.16)

and
�N = −

∫
S

�r × n̂p dS (2.17)

The normal to the body surface n̂ is pointing into the fluid and the pressure is given
by

p = p0 − ρ

(
φt +

1
2

(∇φ)2 + g (z − z0)
)

(2.18)

The partial time derivative of the potential in this expression for the pressure, needed
to calculate the forces and thus the accelerations of the body, is unknown. Using
backward finite differences of φ is unstable, see [2] or [5] for references.

Now we have to look for relations involving φt and the accelerations �ab and �̇ω.
For a water particle anywhere in the fluid the acceleration in terms of the velocity
potential is (from the derivation of Bernoulli, just D

Dt (�∇φ))

�aw = �∇
(

φt +
1
2

(∇φ)2
)

(2.19)

And thus the acceleration of a water particle somewhere on the body boundary in
the direction of the local normal n̂ is

n̂ · �aw = φtn + ∂n

(
1
2

(∇φ)2
)

(2.20)
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Now we have the accelerations of the body �ab and �̇ω as a function of φt from (2.9) till
(2.18) and the perpendicular component of the acceleration of a water particle on the
body boundary n̂ · �aw as a function of φtn from (2.20). We therefore need a relation
between �ab, �̇ω and n̂ · �aw and we need a relation between φt and φtn. That second
relation is easy, we just use

∇2φt = 0 (2.21)

which shares most of the computational effort with the Laplace problem for φ. To
relate the acceleration of the body to the acceleration of the water in a point on the
body boundary we separate the acceleration into the accelerations of the body itself
and into the accelerations relative to the body:

�aw = �ab + �̇ω × �r (translational plus angular acceleration of body)
+ �a ′

w (translational acceleration relative to body fixed coordinates)

+ �ω × (�ω × �r) (centrifugal, “ω2r”)
+ 2�ω × �v ′

w (coriolis) (2.22)

For a water particle moving on the body surface

�a ′
w = �a ′

w,‖ + �a ′
w,⊥ (2.23)

the component parallel to the body surface, �a ′
w,‖, is free, but the component perpen-

dicular to the body surface, �a ′
w,⊥, must be such that the motion follows the shape of

the body. Or better: �a ′
w,⊥ must be such that the motion has the same curvature as

the surface has in the direction of �v ′
w:

�a ′
w,⊥ =

v′2
w

Rv̂′
w

n̂ (2.24)

Thus

n̂ · �a ′
w =

v′2
w

Rv̂′
w

(2.25)

For a water particle in a point on the body boundary the acceleration in the direction
of the local body normal is therefore determined by the motions of the body and the
velocity of the water particle:

n̂ · �aw = n̂ ·
{

�ab + �̇ω × �r + �ω × (�ω × �r) +
v′2

w

Rv̂′
w

n̂ + 2�ω × �v ′
w

}
(2.26)

where

�v ′
w = �vw − �vb − �ω × �r (2.27)

= �∇φ − �vb − �ω × �r (2.28)
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Use the equations of motion to fill in equation (2.26):

n̂ · �aw = n̂ ·
{

m−1 �F + (Ī−1 · ( �N − �ω × (Ī · �ω))) × �r + . . .
}

= n̂ ·
{
−m−1

∫
S

n̂p dS − gẑ + m−1 �Fext

+ (Ī−1 · (−
∫

S

�r ′ × n̂′p dS′ − �ω × (Ī · �ω))) × �r + . . .

}

= n̂ ·
{
−

∫
S

[
m−1n̂′ + (Ī−1 · (�r ′ × n̂′)) × �r

]
p dS′

− (Ī−1 · (ω × (Ī · ω))) × �r

− gẑ + m−1 �Fext + . . .

}

(2.29)

Use (2.20) and (2.18) to get:

φtn + ∂n

(
1
2

(∇φ)2
)

=

n̂ ·
{
−

∫
S

[
m−1n̂′+(Ī−1 ·(�r ′× n̂′))×�r

][
p0−ρ

(
φt +

1
2

(∇φ)2 +g (z−z0)
)]

dS′+ . . .

}

(2.30)

Put the unknowns φt and φtn to the left and the rest to the right

φtn − n̂ ·
∫

S

[
m−1n̂′ + (Ī−1 · (�r ′ × n̂′)) × �r

][
ρφt

]
dS′ =

n̂ ·
{∫

S

[
m−1n̂′ + (Ī−1 · (�r ′ × n̂′)) × �r

][1
2

ρ(∇φ)2 + ρg(z − z0) − p0

]
dS′ + . . .

}

− ∂n

(
1
2

(∇φ)2
)

(2.31)

and write out the dots explicitly:

φtn − n̂ ·
∫

S

[
m−1n̂′ + (Ī−1 · (�r ′ × n̂′)) × �r

][
ρφt

]
dS′ =

n̂ ·
{∫

S

[
m−1n̂′ + (Ī−1 · (�r ′ × n̂′)) × �r

][1
2

ρ(∇φ)2 + ρg(z − z0) − p0

]
dS′

− (Ī−1 · (ω × (Ī · ω))) × �r − gẑ + m−1 �Fext

+ �ω × (�ω × �r) +
(�∇φ − �vb − �ω × �r)2

R(...)
n̂ + 2�ω × (�∇φ − �vb − �ω × �r)

}

− ∂n

(
1
2

(∇φ)2
)

(2.32)
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Here we have (using the Laplace equation in general orthogonal curvilinear coordi-
nates)

∂n

(
1
2

(∇φ)2
)

= φs1φs1n + φs2φs2n + R−1
1 φ2

s1
+ R−1

2 φ2
s2

+(R−1
1 + R−1

1 )φ2
n − (φs1s1 + φs2s2)φn (2.33)

with s1,2 the local orthogonal tangential coordinates and R1,2 the respective local
curvature radii.

Let us summarize using

j(�r, �r ′) ≡ m−1n̂ · n̂′ + n̂ · [(Ī−1 · (�r ′ × n̂′)) × �r
]

(2.34)

the contribution of the body gyro moment

B(�r) ≡ −n̂ · [(Ī−1 · (ω × (Ī · ω))) × �r
]

(2.35)

and the remaining known quantities

W (�r) ≡ n̂ · [�ω × (�ω × �r) +
(�∇φ − �vb − �ω × �r)2

R(...)
n̂ + 2�ω × (�∇φ − �vb − �ω × �r)

]

− ∂n

(
1
2

(∇φ)2
)

(2.36)

to get

φtn(�r) −
∫

S

ρφtj(�r, �r ′) dS′ =
∫

S

[1
2

ρ(∇φ)2 + ρg(z − z0) − p0

]
j(�r, �r ′) dS′

− g(n̂ · ẑ) + m−1(n̂ · �Fext) + B(�r) + W (�r) (2.37)

Combining these relations expressing the body boundary conditions with the integral
equation for ∇2φt = 0 both can be solved simultaneously. The resulting φt on the
body boundary can be used to calculate the fluid forces on the body which in turn can
be used to calculate the accelerations �ab and �̇ω of the body. From these the normal
velocity φn on the body boundary follows, which is used to solve the next ∇2φ = 0
problem.

2.1.4 Discretisation

The whole water boundary is represented by a finite number of points on that bound-
ary. They are called collocation points and are grouped together into several patches
with a rectangular topology. This gives us a structured grid of collocation points.
The eight neighbours around a collocation point define a local quadratic surface ele-
ment called a panel. All panels together represent the boundary surface of the water.
These eight neighbours are also used to calculate any tangential derivatives in the
central point using finite differences. Now the boundary integral (2.3) can be written
as a sum of integrals over the individual panels, considering as field points only the
collocation points, at positions �xi:

Ω
4π

φ(�xi) =
N∑

j=1

∮
∆Sj

[
∂φ

∂n
(�x ′)G( �xj , �x

′) − φ(�x ′)
∂

∂n
G( �xj , �x

′)
]

dSx′ (2.38)



2.2. Grid topology 11

On each panel φn and φ are approximated with a Taylor expansion around the col-
location point of the panel, φn up to first order and φ up to second order (inclusive).
The tangential derivatives in these expansions are evaluated using finite differences
with neighbouring values. These φn(�xi) and φ(�xi) in the collocation points �xi do not
depend on the local coordinates and can therefore be taken out of the integration of
each term. Collecting all terms depending on φn(�xi) and φ(�xi) results in the following
system of equations

N∑
j=1

[
Cs(i, j)

∂φ

∂n
(�xj) + Cd(i, j)φ(�xj)

]
= 0 (2.39)

The Cs are called the source influence coefficients and the Cd are called the dipole
influence coefficients. These N equations include 2N unknowns. However, on each
patch or network of collocation points either φn or φ is given. Putting these known
terms on the other side we get a standard linear system Ax = b. In general the matrix
A is full and neither symmetric nor positive definite. This linear system is solved by
an iterative method called Conjugate Gradients Squared (CGS).

Romate [25] showed that when using a quadratic representation of the panel ge-
ometry, a quadratic representation of the potential on the panel, and a linear repre-
sentation of the normal derivative of the potential on the panel, the local asymptotic
truncation error would be of order ∆3 on smooth boundaries, and of order ∆2 on
non-smooth boundaries in the current method. This resulted in a global asymptotic
error of order ∆2 for practical geometries.

To integrate φ and �x in time (using φt and �v) a classical fourth order Runge-Kutta
method is used. This means that the linear system has to be constructed and solved
four times per time step.

2.2 Grid topology

The panels are organised in groups, called networks, with a rectangular topology.
These rectangular collections of panels can be connected to each other to form a grid
on the boundary surface of the water domain. Every edge of the network can be
divided into several edge parts, with a minimum length per edge part of four panels.
Each edge part can be connected to another edge part. To connect edge parts the
number of panels in both edge parts needs to be the same. Edge parts can connect
smoothly or under an angle, both cases have their own intersection algorithm. The
discretisation stencils on both sides of the intersection are one-sided, even when it is
a smooth connection. Since these one-sided discretisations present a discontinuity to
the passing waves, the number of network intersections on the free surface should be
minimised. The current intersection algorithms are described in Broeze [3].

2.3 Grid motion

Using fully nonlinear free surface boundary conditions means that you have to track
the free surface. The grid cannot be kept fixed, it needs at least one degree of freedom
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for every collocation point. Only motions perpendicular to the water domain bound-
ary are physically relevant. If the tangential motions are relevant, it is only because of
the numerics. On boundaries where the boundary condition does not depend on the
value of the previous time level, the boundary can be regridded arbitrarily without
causing numerical problems. Examples are a solid wall condition or prescribed body
movement. On boundaries where the boundary condition does depend on the value
of the previous time level, like on the free surface, one has to be more careful. To
exploit the tangential freedom for maintaining a nice grid distribution the tangential
velocities should be adjusted just a little bit in every time step. The transport of
the previous value to the new position is then already taken care of by the material
derivative, which is already used for the standard motion.

2.3.1 Free surface

The time evolution of a volume of incompressible water in irrotational motion is
completely determined by the normal velocities at the boundary. We are therefore
free to manipulate the tangential velocities of the collocation points to enforce a
favourable grid distribution or to restrain the degrees of freedom of the collocation
points.

Lagrangian grid motion

Lagrangian grid motion means that the collocation points basically move with the
local water velocity. Tangential correction velocities are only applied to guarantee
a reasonable grid distribution. The vertical networks at the open boundaries move
like a curtain: the top follows the lagrangian motion of the free surface and the rest
moves with the same horizontal velocity to prevent large deformations of the network.
This does change the normal velocity at the boundary, but this is not important as
it is an artificial boundary. Broeze found in his thesis that this lagrangian motion
was necessary for doing stable calculations of highly nonlinear waves, because of the
hyperbolic character of the free surface condition.

Eulerian grid motion

Eulerian grid motion means that the freedom to choose the tangential velocities is
used to keep the horizontal velocities of the collocation points zero:

�v = �v⊥ + �v‖, with �v‖ such that v̂ · ẑ = 1. (2.40)

This implies that an overturning free surface is no longer allowed. All collocation
points have now a fixed horizontal position, so although the grid distribution is always
reasonable it is no longer possible to increase the local grid density in difficult spots,
for example near the crest of a wave. At the open boundaries the characteristics go
in and out of the domain. This can cause instabilities, as mentioned above.

Mixed lagrangian and eulerian grid motion

When there is a vertical cylinder penetrating the free surface, the collocation points
near the cylinder somehow have to stay in the neighbourhood of that cylinder. It is
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possible to use a mix of lagrangian and eulerian motion for this. Near the cylinder
the motion can be completely eulerian and in the far field completely lagrangian:

�v‖ = (1 + ε)�v‖,eul + ε�v‖,lagr (2.41)

with ε changing smoothly from 0 near the cylinder to 1 further away.

2.3.2 Free surface with a body

The collocation points nearest to the body should keep a more or less constant distance
from it. They could move along the circumference of the body as long as the grid
density remains reasonable. For bodies with a more or less circular horizontal cross-
section this would be a good way to deal with rotations of the body, for bodies with a
longer horizontal cross-section this would be difficult. The collocation points a little
further away from the body should move more or less the same as the collocation
points more closer to the body to maintain a reasonable grid distribution. Moving
further and further away from the body the requirement to follow the motions of the
body can be gradually relaxed. In the far field the collocation points can then move
either lagrangian or eulerian.

We have therefore a mix between two behaviours, one is to follow the body and
the other is to ignore the body. We need to specify what we mean by following the
body for arbitrary collocation points. First consider the body but now enlarged with
such a factor that the collocation point under consideration is on its surface. This we
will call the virtual body. Following the body means moving parallel to the tangent
plane B of the virtual body in the collocation point. Now consider the tangent plane
W of the free surface in the collocation point. We are free to add correction velocities
to the motion of the collocation point as long as they are parallel to the tangent
plane W. Combining these two constraints leaves us free to move along the virtual
waterline.

We will make this more precise now. The velocity of the collocation points can be
written as follows

�vcp = �vwater + �vcorr (2.42)

It is more convenient however to split the correction velocity up into two parts, one
part that is also applied at infinity, and one part that has to do with the motion of
the body. Then we can write

�vcp = �v∞ + ε�w (2.43)

where
�v∞ = �vwater + �vcorr,∞ (2.44)

and �w ∈ W is the correction velocity that tries to follow the body. Again ε should
vary smoothly from one near the body to zero at infinity. We try to determine �w, so
in the remainder of this section ε = 1. To move parallel to the body we must have
the following

�vcp · n̂B = �vbody · n̂B (2.45)

where �vbody is the velocity of the virtual body surface in the collocation point and n̂B

the unit normal to the tangent plane B. Using (2.43) this implies that

�w · n̂B = �vbody · n̂B − �v∞ · n̂B (2.46)
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We can also put it differently by considering the tangent to the virtual waterline

WL = W ∩ B (2.47)

Now we span W by the orthonormal basis vectors ŵ‖ and ŵ⊥. The first one also
spans WL. This enables us to write

�w = c ŵ⊥ + d ŵ‖ (2.48)

where c is determined by eq. (2.46) and d is free. This freedom along the waterline
can be used to limit the motion of the collocation points to certain trajectories on
the (virtual) body. This can be used to control the grid on the body, which could be
very useful for difficult shapes, for example shapes with relatively sharp edges. As an
example we take the meridians on a sphere, assuming both poles to be near the top
and the bottom respectively. To follow the meridians (ϕB is constant) we can chose
d such that

d =
�vbody · ϕ̂B − �v∞ · ϕ̂B

ŵ‖ · ϕ̂B
(2.49)

2.4 Incoming wave fields

On the artificial lateral boundaries of the water domain an incoming wave field can be
specified if either φ or φn is known as a function of time and position. For non-linear
regular1 waves a Rienecker & Fenton description is used [23]. It is a superposition of
linear solutions with wave numbers jk (j = 1..N), all moving with the same velocity.
Given a period T , a wave height H, and a water depth h, all coefficients are determined
such that the superposition satisfies the fully non-linear boundary conditions. The
wave elevation is written as

η(x, t) =
a0

2
+

N∑
j=1

aj cos(jk(x − x0 − ct)) (2.50)

and the potential as

φ(x, z, t) = (c+B0)(x−x0)+
N∑

j=1

Bj
cosh(jk(z + h))

cosh(jkh)
sin(jk(x−x0−ct))+b(t) (2.51)

with

b(t) = −(g(R − h) − 1
2
c2)t (2.52)

following from the choice of B(t) = 0 in the Bernoulli equation. For deep water this
term is very small.

1A stationary wave profile with a certain wavelength and period, the closest thing to a monochro-
matic wave.
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2.5 Absorbing outgoing waves

On the artificial lateral boundaries of the water domain not only the incoming waves
have to be put in, but also the outgoing waves have to be allowed to go out. In our
case the external wave field is prescribed on the whole outer lateral boundary, coming
and leaving. With the outgoing waves we then mean the waves resulting from the
diffraction of the external wave field by the body inside of the domain. There are
two ways to let these diffracted waves go out of the domain. First we can modify the
boundary conditions on the lateral boundaries such that outward moving waves are
anticipated for in the boundary condition. This can be done by using a Sommerfeld
radiation condition. Secondly, we can modify the boundary conditions on the free
surface such that any wave motions are damped. This is called an artificial beach. It
is obvious that both these modifications need to be made such that they only apply
to the difference with the external wave field. A combination of these two methods
proves to be the most effective. Both the artificial beach itself as the combination of
that beach with a Sommerfeld radiation condition is called the beach in the present
thesis, but that should be clear from the context.

2.5.1 Sommerfeld radiation condition

Every function f(x, t) ≡ f̃(x − ct) is constant for x(t) = x0 + ct or

df

dt
=

∂f

∂x
c +

∂f

∂t
= 0 (2.53)

Applying this Sommerfeld radiation condition to the difference with the incoming
Rienecker & Fenton wave we get

φt = φRF
t − c

[
(φr − φRF

r ) +
1
2r

(φ − φRF )
]

(2.54)

The 1/2r term results because in 3D the diffracted amplitude gets smaller to keep
the radiated energy constant. The reflection coefficient is

|r| =
∣∣∣∣cs − cwave

cs + cwave

∣∣∣∣ (2.55)

Using the deep water limit of the linear dispersion relation, ω =
√

gk, we get

|r| =
∣∣∣∣1 − ωSRC/ωwave

1 + ωSRC/ωwave

∣∣∣∣ (2.56)

Or more compact:

|r| =
∣∣∣∣1 − ωs

ω

1 + ωs

ω

∣∣∣∣ (2.57)

This reflection coefficient only vanishes when the outgoing wave has the same fre-
quency as the tuning frequency of the Sommerfeld radiation condition. To absorb
outgoing waves of several frequencies we need a dissipative zone on the free surface.
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2.5.2 Pressure damping

Instead of doing something smart at the outflow boundary, one can also add dissipative
terms to a piece of the free surface. This takes more grid points, but is effective for
a broader range of frequencies. Most ideal is the combination with a Sommerfeld
radiation condition, because the absorption of the lower frequencies takes a longer
stretch of beach. We implemented the method used by Westhuis [30] and Meskers
[20], which has been proven to be very effective. In the pressure damping zone an
extra term is added to the dynamic free surface boundary condition:

φt,damp =
pdamp

ρ
(2.58)

where
pdamp = b · (r − r0) · (φn − φRF

n ) (2.59)

with r the horizontal radius and b a constant.
Meskers derived in his master thesis some expressions for the reflection coefficient

of such a beach. His two dimensional derivation gives, with some small modifications,
the same results for a circular damping zone in three dimensions absorbing waves from
a point source in the middle. The reflection is the sum of the immediate reflection on
the beginning of the beach, because of the discontinuity in the medium, and of the
reflection of the transmitted wave at the end of the beach. When the beachs ends in
a Sommerfeld radiation condition this last reflection equals

rt = t · rsrc · t (2.60)

where t is the transmission coefficient for the beach:

t = e−
1
2

b
b0

(kL)2 (2.61)

with

b0 =
ρg

c
=

ρgk

ω

deep
= ρω (2.62)

for the linear deep water limit. Then the total reflection is given by

rtot = t · rsrc · t + rb (2.63)

The bounce reflection rb depends on the discontinuity introduced by the beach and
thus on the beach characteristics:

rb = f(
b

b0
) = 0 + f ′ · b

b0
+ . . . (2.64)

Two-dimensional numerical experiments of Meskers proofed this first order approxi-
mation to be sufficient and determined f ′ to be 0.2. This brings us to a total reflection
coefficient of

rtot =
∣∣∣∣1 − ωs

ω

1 + ωs

ω

∣∣∣∣ · e− b
b0

(kL)2 + 0.2 · b

b0
(2.65)
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2.5.3 Selecting the beach parameters

We want a convenient graph to select the beach parameters. We therefore rewrite
(2.65) to

rtot(rb,
L

λ
) =

∣∣∣∣1 − ωs

ω

1 + ωs

ω

∣∣∣∣ · e− rb
0.2 (2π( L

λ ))2 + rb (2.66)

Using rb instead of b
b0

enables us to use the same axis for rb and rtot . To find the
smallest beach length that gives a certain amount of reflection we also plot the zero
contour of the partial derivative of rtot with respect to rb. The points on this contour
have the smallest beach length for a certain rtot . For the calculations presented later
in this thesis there was not a lot of room for a beach. The length of the beach was
therefore more or less fixed. The parameter that remained to be determined was the
slope of the beach, b.

For the calculations with the cylinder in chapter 3 the Sommerfeld radiation con-
dition is tuned to the incoming wave frequency. This guarantees that the first order
components of the diffraction, that have the same frequency as incoming wave, are
absorbed completely if there is no beach. The higher components of the diffraction
need a beach, but this will introduce a bounce reflection for the first order compo-
nents. The second order components of the diffraction have a frequency that is twice
the frequency of the incoming wave and have thus a wavelength that is a quarter of
that of the incoming wave. Figure 2.1(a) is here appropriate.

For the calculations with the sphere in chapter 4 the Sommerfeld radiation condi-
tion is also tuned on the incoming wave frequency to absorb the first order diffraction.
To absorb the radiated waves from the sphere because of its heave motion a beach
is used. The initial transients will include lower frequencies then the heave eigen fre-
quency. In these calculations the largest difference in frequency between the incoming
wave and the heave eigenfrequency gives a ωs/ω of around 0.75. See figure 2.1(b).
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(a) For the cylinder the SRC is tuned on the incoming wave. For the 2ω com-
ponents ωs/ω is then 0.5. For the ω components the reflection only depends on
rb.
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Figure 2.1: Two graphs of eq.(2.66) for convenient values of ωs/ω.



Chapter 3

Three-dimensional diffraction
calculations

We want to get a practical diffraction calculation running and we want to validate
it. For a circular vertical cylinder kept fixed in regular waves there is a lot of data
available and because of its simple form arbitrary grid generation problems can be
postponed until later. We concentrated our efforts on the regular wave cases of the
ISSC comparative study. These included the little less simple form of a rounded
square cylinder. In this study only measurements of the wave height were considered,
not of forces or pressures. If you already know the free surface, forces or pressures do
not give any really new information in potential theory. They are also less sensitive.
So we too put our focus on the wave height around the cylinder. Preliminary results
were presented in [1]. In a later stage we also took the opportunity to compare
our calculations with the wave profile measurements performed by the EXPRO-CFD
project for a similar situation.

3.1 Setup

In a time domain code it is tempting to mimic the diffraction experiments as done in
the wave basin by including a wave maker. However, this is not necessary and not
efficient. When a wave flap is used for creating the wave field one has to start from a
basin in rest. From there it takes time for the wave field to settle down and to reach
the object. The alternative, the analytical description of an incoming regular wave
field, is more flexible.1 Such an inflow condition puts no requirements on the shape
of the outer boundary. This freedom can be used to please the outflow conditions.
Those outflow conditions have to deal with the diffracted waves spreading from the
object out to infinity. This is an essentially spherical symmetric situation, that can
be handled best by a grid having the same property. If the object is then also almost
spherical symmetric, the grid generation turns out to be really simple. Hence, it is
natural to have an outer domain boundary that is cylindrical.

1Similar tricks should be possible for an irregular wave field, see chapter 6.
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20 3. Three-dimensional diffraction calculations

In HYPAN panels are organised in patches with a rectangular topology called net-
works. The intersections between networks are problematic. This makes it desirable
to have the free surface made up out of one network. For a cylindrical setup the free
surface network will then be laid around the object and connected to itself. Because
of the rectangular network structure panels close to the object will be relatively small
and panels far away will be relatively large. This gives a larger resolution in the vicin-
ity of the object, where it is appreciated. On the other hand, one cannot control the
circumferential resolution as it becomes less and less moving away from the object.
This causes problems when trying to resolve the incoming wave, effectively putting a
limit on the domain radius depending on the required resolution and the number of
panels in the circumferential direction.

Using one network for the free surface in such a way still leaves us with one network
intersection in that free surface. This is not optimal. Because we have a left-to-right
symmetry in all cases that we are going to consider, we can use a simple work around.
The intersection is put at right angles with the incoming wave in, say, the right half of
the free surface. The disturbing effects of that intersection will be largely contained
within that right half of the free surface. We can then replace the solution2 in that
half with the values coming from the other half, effectively removing the intersection
at the cost of needing symmetry without being able to use it for bringing down the
computational cost. Certainly, it would be better to introduce networks that can
attach to themselves without having to use one-sided discretisations. However, this
would involve a lot of small logistic changes in the core of the code, without providing
a general solution. This was considered a waste, since Eggermont was already working
on a more fundamental solution.

The purpose of the outflow boundary is to absorb the outgoing diffracted waves
instead of reflecting them. This can be achieved by the applying absorbing techniques
to the difference with the (analytical) incoming wave. The lowest frequencies can be
absorbed best by a Sommerfeld radiation condition tuned to the lowest frequency.
The higher frequencies can then be absorbed by a relatively short pressure damping
zone.

A time domain program has to start up from some known situation to the situation
you are interested in. On a circular outer boundary one cannot prescribe an arbitrary
start-up function on an incoming wave, because the value at the sides must correspond
with the physical evolution. So instead of bringing the wave carefully onto the object
we bring the object carefully into the wave. Using the analytical description for the
incoming wave we have a continuous path from prescribing the normal velocity of the
full incoming wave on the object to prescribing a normal velocity of 0 on the object.
See also Ferrant [8].

Using lagrangian grid motion, calculations remain stable even for very high waves.
When the orbital motion of the water particles is large compared to the object, how-
ever, lagrangian grid motion is no option. As a compromise, one can use fully eulerian
grid motion near the object, fully lagrangian motion (far) away from the object, and
a varying linear combination of them in between. However, lagrangian motion needs
some corrections to guarantee an acceptable grid distribution. When the positions of
the grid points form a rectangular array in physical space these algorithms are more
or less straightforward. When the positions of the grid points form a curved array

2This is done each time a new solution is calculated.
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they are not. Therefore we tried to get away with eulerian motion.
For the moment the diffracting object is defined by its depth, its horizontal co-

ordinates, and vertical freedom of motion. This fits (truncated) vertical cylinders of
arbitrary cross-section. The standard intersection algorithms in HYPAN can handle
this. Grid points on the cylinder mantle move with a fraction of the motion of the
intersection point above them. The bottom networks of the cylinder are kept fixed in
time.

3.1.1 Grid

The domain is cylindrical, with a truncated vertical cylinder in the middle. The
bottom of the cylinder is flat, because there was no need to make it nicely rounded.
The cylinder and the domain boundary are therefore similar in shape. For their
circular bottoms we use five networks: one square in the middle, with a width half
the diameter of the bottom, and four networks around the square each connected to
one of its sides. The cylinder mantle consists of one network connected to itself. The
same is true for the free surface and for the outer domain boundary.

All HYPAN networks are collections of panels with a rectangular structure.3 Con-
necting networks have to be connected panel by panel, but not necessarily with all
panels: a network edge can be divided into segments, each connecting to a fitting
segment of another network. This rectangular structure means that by choosing the
number of panels on the free surface around the cylinder the number of panels in the
circumferential direction of the other networks will also be fixed. For example, on
the cylinder mantle one cannot change the number of panels in the circumferential
direction, especially not as a function of depth, whereas one certainly would like this
possibility to bring down the total number of panels.

Because the circular free surface is covered by one network with a rectangular
topology connected to itself, the width of the panels in the circumferential direction
is determined by the number of panels on the circumference of the cylinder and the
distance to that cylinder (constant angle). To resolve the incoming wave a minimum
number of panels per wavelength is required at the outside of the domain. Given the
number of panels in the circumference, the maximum radius is then determined by

R =
M

2πn
λ, (3.1)

with M the number of panels in the circumference, and n the required number of
panels per wavelength. At a minimum resolution of 25 panels per wavelength, 40
panels in the circumference give a radius of half a wavelength, 80 panels a radius of
one wavelength, and 160 panels a radius of two wavelengths.

On the free surface the resolution should preferably be the same in all directions.
This is impossible, because the circumferential width of the panels has to span a fixed
horizontal angle. For waves originating in the centre of the domain a constant radial
width would be sufficient. But for waves moving in any other direction the differences
in resolution, especially near the outer boundary, would be very high in such a situ-
ation and would probably influence the propagation. Originally, we therefore choose
to use approximately square panels on the free surface. In a later stage we kept the

3See also chapter 2.
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panels square up to a certain radius, after which the radial width remained constant.
Any deviations from the incoming wave should be damped by the beach anyway.

Given the exponentially decaying amplitude of the wave solutions while going
deeper into the water, the need for resolution is higher near the free surface and
lower away from the free surface. Because of the large differences in size between the
smallest and the largest panels it was preferred, from a numerical accuracy point of
view, to make the largest panels, the ones on the outer boundary, not unnecessary
large. At the bottom of the outer boundary this meant not making the panels higher
than their width in order to have less panels. To resolve the incoming wave on the
outer boundary it did not seem to be necessary to have the height of the panels close
to the free surface be less than their width (at the expense of more panels and a less
than ideal aspect ratio). On the outer boundary we therefore have square panels.
On the cylinder mantle the panels close to the free surface should be close to being
square. However, to provide some extra manoeuvring margin for the grid motion,
the height of those upper panels was taken to be twice their width. For simplicity,
all the other panels on the cylinder mantle were given the same size. At the time it
was not considered worth the effort to try to minimise the number of panels as much
as possible by letting the panel height grow as much as possible going deeper and
deeper. The gain that could be expected reasonably was at most 1000 panels less
(of 9000 panels), including the effect of a similar policy on the outer boundary. This
would have given a decrease in calculation time of around 30 percent.

The previous considerations result in the following panel configuration. For all
calculations there are 80 panels in the circumference. For the mixed grid there are 30
panels in the radial direction of the free surface. Along the vertical direction of the
cylinder mantle there are 20 panels, along the vertical direction of the domain mantle
there are 25 panels. This results in a total number of panels of 7760.

3.1.2 Start up

Typically, a time domain diffraction calculation consists of the following phases: start
from rest, create a sea state, and look at the resulting behaviour of the object (for some
time). Starting from rest and creating a sea state takes time. You want the fastest
route to that sea state. In general one knows this sea state more or less analytically:
either one has an explicit formula, or one can interpolate between numerical wave
tank data. The sea state including the object is not known of course. Normally, one
starts from rest and introduces the wave gently on to the object. If, however, one has
an analytical description for the incoming wave, one can gently introduce the object
into the wave: start with prescribing the wave solution on the object and then slowly
bring the normal velocity on the object down to zero.

Bringing the wave in gently has another downside in our case. Having an analytical
description for the incoming sea state but no analytical description for the evolution
from rest to that sea state, an arbitrary start-up function has to be used. It should
start at 0 and change sufficiently smoothly to 1. Multiplied with the incoming sea
state we get an analytical description that starts with no waves at all and which then
changes to the full incoming sea state in a smooth way. However, when applied on a
circular boundary the waves that travel through the middle will be different from the
waves that are prescribed on the boundary further to the outside. Unless, of course,
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(a) complete grid of mixed grid at t = 0

(b) cylinder grid viewed from below at t = 0

Figure 3.1: Two different views on the grid used.
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Figure 3.2: Free surface grids for the circular and square cylinders.
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the start-up function has a physical time evolution (dispersion relation). With a very
good beach this should not be a big problem, one could just wait until all the start-up
phenomena would have been absorbed, but for our current beaches the statement
“What you don’t put in you don’t have to take out” is very applicable.

As said before, we start with the incoming wave field prescribed in the whole
domain. This means for example that the free surface is initialised with the appro-
priate wave elevation and the appropriate potential, both derived from the Rienecker
& Fenton description of the incoming wave.

For the boundary condition on the cylinder we take the following:

φn = εφRF
n , with ε =




1 if t ≤ 0
see (3.3) if 0 < t < τ , τ = T or 2T
0 if t ≥ τ

(3.2)

ε =
1
2

tanh
(

tan
(

π

2

(
1 − 2

t

τ

)))
(3.3)

Here τ is the start-up time and T is the period of the incoming wave. The super-
script RF refers to the semi-analytical Rienecker & Fenton description.
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Figure 3.3: Graph of ε (see (3.2)) as a function of t/τ .

3.1.3 Grid motion

The basic theory concerning the motion of the grid has already been presented in the
theory chapter. This section is meant to give an explanation of what we did and why
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we did not do it otherwise.

Free surface

The motion of the free surface grid can be implemented in several ways. As described
in the theory chapter, Broeze showed in his PhD thesis that a lagrangian treatment
of the free surface was the most stable one. For the current problem this has some
drawbacks however. Because the orbital motion of the incoming wave is comparable
to the size of the object, the grid points around the object go from the front to
the back, and back again, causing large changes in the resolution. With even larger
orbital motions the grid points would like to leave the cylinder, which is of course
impossible. From this it is obvious that the grid points around the cylinder should
be fixed relative to the cylinder, at least to some degree. The other drawback is less
fundamental, but still significant. When applying lagrangian motion some attention
should be given to the distribution of the grid. This can be accomplished with the
use of correction velocities. In the case of rectangular grids the algorithms for the
correction of the velocities are relatively straightforward, because it is just a matter
of keeping things straight. For nonrectangular grids the situation is more difficult:
the difference between good non-straight and bad non-straight is very difficult to put
in an algorithm.

The first drawback necessitates the use of at least a mix of eulerian and lagrangian
motion. The second drawback makes it attractive to first try fully eulerian motion.
A fixed grid is of course always convenient. To judge whether eulerian motion is
acceptable a Rienecker & Fenton wave is also prescribed on the cylinder to see whether
the grid causes any unacceptable deviations from the prescription. See the testing
section. The eulerian motion proved to be sufficient, so we kept using it.

Cylinder

With eulerian motion close to the cylinder, the motion of the grid on the wetted
surface of the cylinder becomes trivial. The horizontal positions specified at start up
for the points on the cylinder mantle define the mantle shape. During the simulation
only the vertical coordinates will be modified. The collocation points move with
a fraction of the vertical velocity of the fluid: no movement on the bottom of the
cylinder and proportional to position in between. In addition, the collocation points
get a small correction velocity towards the centre of their panel, which is half way
its vertical neighbours. When using square panels, this simple algorithm allows the
topmost collocation point to come too close to the free surface for the highest waves.
Taking the vertical width as twice the size of the horizontal width gives enough space
for buffer.

Other surfaces

The motion of the other surfaces, the bottom and the outer boundary of the domain,
depends on the motion of the free surface. In case of eulerian motion the vertical
network that forms the outer boundary only has to move in the vertical direction to
follow the intersection with the free surface. The bottom networks can then remain
at their initial positions. The collocation points of the outer boundary network get a
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vertical velocity equal to that of the fluid, together with a small correction velocity
towards the centre of their panel. For the large panel sizes at the outer boundary this
algorithm is subtle enough.

3.1.4 Beaches

The incoming wave is prescribed both at inflow and at the outflow. Or in other words,
around the entire outer boundary. The diffracted waves reaching the outer boundary
have to be absorbed. Or, to be more precise, everything that reaches the outer
boundary other than the incoming wave that should be there and is prescribed already,
should be absorbed. We therefore apply absorbing techniques to the difference with
the incoming wave.

Because we will be looking at regular wave cases, the diffracted waves will consist
mainly of contributions at the incoming wave frequency supplemented by contribu-
tions at multiples of that frequency. This makes the Sommerfeld radiation condition
the ideal starting point for a beach setup. A Sommerfeld radiation condition tuned
on the incoming wave frequency takes out the first order diffraction and the higher
diffraction affects can then be removed by a relatively short pressure damping zone.

There is not a lot of room for a beach. Coming too close to the object will disturb
the diffraction field in its neighbourhood. Having a beach of 32 m seemed to be
a good compromise. This is one wavelength of the first higher harmonic. With a
domain radius of 64 m there remains an area of 32 m radius with an unmodified
free surface boundary condition. The cylinder has a radius of 8 m. We chose three
different beach strengths, see section 2.5.3: a beach slope parameter b of 0.10 · 103,
referred to as full beach, a value of b of 0.05 · 103, referred to as half beach, and
a value of b of 0.025 · 103, referred to as quarter beach. The dimensions of b are
[ρω] = kg · m−3 · rad · s−1. The full beach has a bounce reflection for the first order
component of the diffraction of around 3% and a total reflection for the second order
component of again around 3%. The quarter beach has a bounce reflection for the
first order component of the diffraction of around 1% and a total reflection for the
second order component of around 17%. The relative performance of the beaches
therefore depends on the relative importance of the higher order components in the
diffraction.

3.2 Testing

First we want to know whether our grid can resolve the incoming wave. For that, we
prescribe the incoming Rienecker & Fenton wave also on the cylinder. Now, ideally,
there should be nothing else than the incoming wave in our domain and any deviations
are spotted easily by looking at the difference with the prescribed incoming wave.

Secondly, we want to get confidence in the rest of the setup. For this we have
to compare to some known data. Experimental data is not ideal for bug hunting.
There is a limited number of data points and the accuracy is relatively small and not
certain. Ideally, one would like to have analytical expressions to compare with. In
that case one can have a very detailed look at what goes wrong where. Of course,
we do not have such expressions for the cases we are really interested in. However,
we can compare with linear diffraction theory in some simple situations. In this case,
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the linear diffraction solution for an infinite vertical cylinder from McCamy & Fuchs
[19] can be used.

3.2.1 Rienecker & Fenton wave with open cylinder

How well do we resolve the incoming wave? To answer that question we prescribe
the incoming wave solution also on the cylinder, while retaining the beach and the
Sommerfeld radiation condition. Subtracting the incoming wave solution from the
resulting solution shows any deviations from the ideal situation. As said before in
section 3.1.1, we originally used more or less square panels on the free surface. In a
later stage we made the radial width of the further out lying panels smaller4 in an
effort to minimise the inaccuracies. We refer to this grid as mixed grid and to the
original one as square grid.

Looking at the maximum deviations from the incoming wave elevation as a func-
tion of time, one notices the following. For the 4 m high wave, figure 3.4, the deviations
remain at approximately 1% for four periods. The difference between the two differ-
ent grids is perhaps a factor of 1.2. These results are more or less independent of
whether the cylinder is circular or square, as is shown by figure 3.7. For the 8 m high
wave, figure 3.5, the difference between the two different grids is larger: the peaks in
the deviations of the square grid are 1.6 times higher than those in the mixed grid.
For the mixed grid the deviations in the collocation points near the cylinder5 are
around 1% after three periods. For the square grid this is 1.5%. Animations of the
deviations on the free surface show that most of the deviations near the cylinder have
their origin in the outer half of the domain, as was to be expected considering the low
resolution of the grid in that part of the domain. We conclude that the deviations
from the incoming wave are around 1% in our calculations. For the 8 m high wave
we need the mixed grid for that.

To obtain these results for the 8 m high wave with the circular cylinder and for the
4 m high wave with the square cylinder, we had to use equation 6.22 from Broeze (A.1).
The 4 m high wave with the circular cylinder did not have such problems. For the
8 m high wave there is on the back of the cylinder a little bump going up and down
spreading around the cylinder and backwards. The little wave spreading around the
cylinder could be a cross wave instability as described in Broeze, having the backwards
spreading wave as a consequence. That it only occurs at the backside of the cylinder
suggests that the prescription of the incoming wave on the cylinder mantle has at least
something to do with it. On the other hand, the peak of the wave is moving from the
front side to the backside of the cylinder, encountering their one-sided finite differences
in opposite directions. This gives a possible reason for the observed asymmetry. To
prevent any cross wave instabilities, Broeze used equation 6.22 in his thesis. It applies
a small amount of damping depending on a measure of the discretisation error at the
first row of collocation points on the network. We did the same: for the results see
figure 3.8(a) and figure 3.8(b). As can be seen, this procedure does not prevent the
occurrence of the cross wave entirely, but it does prevent it from getting out of hand.

4By making the radial width constant after a certain radius.
5Near means the inner 15 rows.
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Figure 3.4: Maximum elevation error as function of time for the 4 m high wave.
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Figure 3.5: Maximum elevation error as function of time for the 8 m high wave.
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3.2.2 Comparison with linear diffraction theory

In this section the whole setup is tested by comparing with the linear diffraction
solution by McCamy and Fuchs for an infinite, vertical cylinder diffracting a regular
wave on deep water. Instead of an infinite cylinder we double the depth of our cylinder
from 24 m to 48 m. To ensure that that is close enough to a cylinder of infinite depth
we double the depth again and look at the difference. See figure 3.9. As one can see
the difference between the two is negligible, so we consider the infinite solution to be
appropriate reference material for the 48 m deep cylinder.6 For the amplitude of our
linear wave calculated in our non-linear diffraction code, we take a value of 0.10 m on
a wavelength of 126 m. This corresponds to a steepness of a/λ = 0.001.
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Figure 3.9: Maximum difference between the 48 m deep and the 96 m deep cylinder
up till t/T = 4. Please note the exponent in the top left corner.

Start up from complete linear solution

We take out the start-up part of the setup, and directly start from the complete
linear diffraction solution. The beach turns out to have a large effect. This is shown
by considering four different beach strengths including no beach. Note that for a
linear diffraction calculation the Sommerfeld radiation condition should be sufficient
(as long as it is applied in the far field).

The calculation without a beach but with a Sommerfeld radiation condition has
after four periods an error of two percent. Half of that has the shape of a wave with the

6The orbital motions of a wave with a wavelength of 128 m have at a depth of 48 m a magnitude
that is nine percent of their magnitude on the free surface. At a depth of 96 m it is one percent.
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same wavelength of the incoming wave. We do not understand this. The calculation
with a full beach has after four periods an error of 5 percent. In figure 3.11(f) one
can see that the difference with the linear diffraction solution has an edge at the start
of the beach. It then does not come as a surprise that the beach has a significant
influence. The half beach has an error of three percent, and the quarter beach has
an error of two percent, which is comparable with the calculation without a beach.
Looking at the snapshots of the error at t/T = 3.25, one can see that the shape of
the error is more like the other beaches then like the calculation without a beach.

This section showed that without disturbing transients from the start-up procedure
we can simulate the linear diffraction solution with 2 till 5 percent accuracy depending
on the strength of the beach. See also section 3.3.1.

Linear incoming wave

Here we look at the complete setup: again a normal (closed) cylinder, now combined
with the start-up procedure. We look at two calculations: one without a beach and
one with the full beach. The question is how long the transients associated with the
start-up procedure will spoil the stationary diffraction solution and whether a beach
is needed to absorb them.

The maximum error of the two calculations is the same up till the first quarter of
the first period. Both have then reached an error level of 5 percent. The calculation
without a beach then goes up and down between two and 5 percent for two more
periods, before settling down towards an error level of 1 percent. The calculation
with a full beach settles after four periods on an error level that fluctuates between 3
and 5 percent.

The conclusion is that the calculation with the full beach has lost its transients af-
ter 2 1/2 periods and that the Sommerfeld radiation condition is capable of absorbing
the transients in the linear case.
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(a) Maximum elevation error up till t/T = 4.
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(b) Difference with the linear solution at t/T = 3.25.

Figure 3.10: Start up from complete linear diffraction solution, with a Sommerfeld
radiation condition and without a beach.
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(a) quarter beach
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(b) quarter beach
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(c) half beach
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(d) half beach
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(e) full beach
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(f) full beach

Figure 3.11: Start up from complete linear diffraction solution, with a Sommerfeld
radiation condition and with a beach. On the left side: maximum elevation error up
till t/T = 4. On the right side: difference with the linear solution at t/T = 3.25.
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Figure 3.12: Maximum deviation in the elevation as function of time. Start up from
open cylinder to closed cylinder in one period.
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3.3 Comparison with experimental data

The main comparison is with the ISSC comparative study, as presented in the next
subsection. This study also determined the specifics of our set up. The EXPRO-CFD
wave profile measurements presented in section 3.3.2 happened to come along and
needed little adjustment to the ISSC setup.

3.3.1 ISSC comparative study

The ISSC7 2000 Load Committee, Committee 1.2, identified computation of airgap
under platforms and runup along platform columns as important issues and they initi-
ated a comparative study: “Comparative Study of Airgap on Floating Platforms and
Runup on Platform Columns” [21]. A large number of organisations with a recog-
nised expertise in hydrodynamic modelling were approached for this study. Only six
organisations submitted results to the study. Of those there were only two computer
codes that implemented the fully nonlinear boundary conditions: HYPAN and the
code from Ferrant. Our calculations broke off quite soon then and were not included
in the results. Since these calculations were a very good starting point for practical
diffraction calculations with a floating body we did continue to work on it.

The comparative study defines three separate cases to be calculated. The first case
is a rigid vertical truncated circular cylinder. The cylinder is fixed and exposed to
monochromatic, bichromatic as well as irregular waves. The second case is identical
to the first case except for the cylinder. In this case the cylinder has a square cross-
section with rounded corners. The third case is a complete semisubmersible free to
respond to the waves and exposed to regular waves of various steepnesses. For all
these cases experimental data existed which was used in the final comparison. Of
these cases, only the first two were realistic to try and calculate with our method and
for those two only the monochromatic waves that would not break.

The diameter of the circular cylinder is 16.0 m and the draft of both the cylinders
is 24.0 m. The width of the square cylinder 16.0 m, the radius of the corners is 4.0 m,
and the width of the plane section between the corners on each side is 8 m. One side
is facing the waves. All incoming monochromatic waves have a period of 9.0 seconds,
which implies a linear wavelength of 126 m (the water depth can be considered to be
infinite). This gives a wavelength over diameter ratio of about 8. There are three
different wave heights: 4.22 m, 7.90 m, and 12.65 m. With steepnesses of respectively:
1/30, 1/16, and 1/10. The last one will certainly break and was not considered. The
other two waves will be referred to as the 4 m high wave and the 8 m high wave.

The experimental data consists of wave elevation measurements at a number of
points, grouped in rows radiating outward from the cylinder. In the experiments there
were only wave probe rows in the front half of the cylinder, for the calculations those
positions were mirrored to the back half of the cylinder. This resulted in the following
wave probe configurations, see also figure 3.13. For the circular cylinder there are
seven rows of wave probes going radially outwards from centre of the cylinder: at
0 degrees with respect to the origin of the incoming wave, at 22.5 degrees, at 45
degrees, at 90 degrees, at 135 degrees, at 157.5 degrees, and at 180 degrees. Within
a row the radial distances are: 8.05 m, 9.47 m, 12.75 m, 16.00 m. For the square

7International Ship and offshore Structure Congress
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cylinder there are five rows of wave probes: at 0 degrees, at 45 degrees, at 90 degrees,
at 135 degrees, and at 180 degrees. The radial distances are the same as for the
circular cylinder except for the rows at 45 degrees and at 135 degrees. Here the radial
distances are: 9.707 m, 11.127 m, 14.407 m, and 17.657 m.

(a) near the circular cylinder (b) near the square cylinder

Figure 3.13: The positions of the wave probes near the cylinders. The closed circles
are the original ISSC positions; the open circles are the extra positions.

To give an overview of what the experiments are about we show 7 snapshots of
the 8 m high wave in figure 3.23. In the first three snapshots the wave crest is moving
towards the front of the cylinder, creating a bump in front of it, which then splits up
into two. In the fourth one the two bumps go around the cylinder and in the fifth
one they collide together into a peak at the backside of the cylinder. In the last two
pictures that peak collapses, creating some small waves.

The results of the experiments done for the comparative study are presented as the
maximum elevation in the wave probes for each wave case. The ISSC measurements
were only done for four angles in the front half of the cylinder. We mirrored those
wave probe positions to the back half. All seven angles are put together in one figure
showing for each angle the dependence on the radius.

The 4 m high wave with the circular cylinder

First we give the results of the 4 m high wave together with some comparison material
including the ISSC measurements. After that we present in the same format a range
of slightly different calculations to show the effect of those changes. This includes the
maximum per period (to show when the start-up procedure has lost its influence),
some grid modifications, and a number of different beach strengths.

In figure 3.14 we present our results together with the experimental results of the
ISSC study, some experimental results from a paper by Contento [4], the calculations
of Ferrant done for the ISSC study, and as a reference the linear diffraction results
of McCamy & Fuchs [19]. For each wave probe row there is a subfigure with the
maximum elevation as function of the radius. The angle that the row is making with
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the origin of the incoming wave is given in the title of the subfigure. The elevation
is normalised with respect to half of the incoming wave height, and the radius is
normalised with respect to the radius of the cylinder. Be warned that the vertical
axis does not start at 0! One of the first things that one notices is that the ISSC
results at the second row lie way above the others. They have confirmed that it
should be considered to be wrong. We kept them in, because for the 8 m high wave
there is a similar, although less severe problem. In this way the trustworthiness of
those measurements can be judged better. At the other rows their results agree nicely
with our results and those of Ferrant. Near the cylinder there is no difference between
the calculations from HYPAN and the calculations from Ferrant. One cylinder radius
away from the cylinder the difference is less than 5 percent, with HYPAN lying closer
to the experiments. Compared to the experimental results of the ISSC study the
HYPAN calculations differ by 5 percent or less. The results from Contento are too
high, especially in the first three rows. They do however more or less confirm the
behaviour at the back of the cylinder. For the HYPAN calculations one start up
period is used and less than two periods later the results do not change any more
from period to period, see figure 3.15.

In the next figure, figure 3.16, one can see that changing the grid from a square
grid (beach) to a mixed grid (mixed) makes only a very small difference: at the front
the results are one or two percent smaller. The calculations referred to as broeze and
mixbr are the same as the other two, only now using equation 6.22 from Broeze (A.1).
It did not have a significant effect. The strength of the beach has a much stronger
influence: around 5 percent at the front, see figure 3.17. These calculations used a
mixed grid. One can see that taking half or a quarter of the strength of the beach
will lower the results at the front of the cylinder. At an angle of 45 degrees it then
even coincides with the linear result for the weakest beach (but that linear result is
for an infinite cylinder, see section 3.3.1). At angles of 90 degrees and higher, the
results are almost independent of the strength of the beach. In section 3.2.2 it was
shown that the beach can have an effect of a few percent, which is compatible with
the present results. One cannot say however that the weakest beach is the best beach
for the current incoming waves, since in this case the steepness is not negligible and
therefore there are higher order effects that do not move with the velocity at which
the Sommerfeld radiation condition is tuned. The experimental results do not suggest
that the weaker beaches are better, as was suggested by figure 3.11, but the results
from Ferrant do.

Figure 3.18 shows the time evolution of the waterline on the cylinder. When the
crest of the wave reaches the cylinder two small bumps are split off that move around
the cylinder meeting each other at the back to form a peak and then move back again.
This behaviour is not shown by the linear solution. It is interesting to see that the
linear solution looks like a sort of average to the fully nonlinear solution.
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Figure 3.14: The 4 m high wave with the circular cylinder. Maximum wave elevation
at the extended ISSC wave probe positions. Comparison with experimental data and
the other calculations.



44 3. Three-dimensional diffraction calculations

1
1.5

2
0.7

0.8

0.9 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

 0
o (front)

r/a

max elevation /(wave height/2)

1
1.5

2
0.7

0.8

0.9 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

 22.5
o

r/a
1

1.5
2

0.7

0.8

0.9 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

  45
o 

r/a
1

1.5
2

0.7

0.8

0.9 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

  90
o 

r/a

h422beach: m
axh−2: spread

m
in_t: 18.00

m
ax_t: 90.00

1
1.5

2
0.7

0.8

0.9 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

 135
o 

r/a
1

1.5
2

0.7

0.8

0.9 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

157.5
o

r/a
1

1.5
2

0.7

0.8

0.9 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

 180
o 

r/a

linhypan
3

rd p.
4

th p.
5

th p.
6

th p.
7

th p.
8

th p.
9

th p.
10

th p.

Figure 3.15: The 4 m high wave with the circular cylinder. Maximum wave elevation
at the extended ISSC wave probe positions. Maximum per wave period starting at
period 3.
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Figure 3.16: The 4 m high wave with the circular cylinder. Maximum wave elevation
at the extended ISSC wave probe positions. Miscellaneous changes.
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Figure 3.17: The 4 m high wave with the circular cylinder. Maximum wave elevation
at the extended ISSC wave probe positions. Different beach strengths
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Figure 3.18: Surface elevation on the circular cylinder in the 4 m high wave given
in 15 frames from one period. Normalised elevation versus angle in degrees. Front
at 0 degrees, back at 180 degrees. The dots are the collocation points nearest to the
cylinder, at 1.04 times the radius. The thin line is the linear solution.
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The 8 m high wave with the circular cylinder

Figure 3.19 is the same as figure 3.14, but now for the 8 m high wave. The first thing
one notices is the remarkable behaviour of the calculations done by Ferrant for the
wave probe row at 45 degrees. Most probably this is an error in the handling of the
data and not of the calculation itself. For the 4 m high wave the ISSC measurements
were far too high for the row at 22.5 degrees. Also for the 8 m high wave their results
for that row are quite high. It is less extreme than with the 4 m high wave and they
did not mention anything about it in their report. One probably should be a little
bit careful in trusting these values, however. The other ISSC measurements agree
reasonably well with the numerical calculations, although they lie a little bit higher
in certain places, the deviations are less than 10 percent. The Contento measurements
in this picture are not for a 7.90 m high wave, but for a 8.4 m high wave. We did put
them in to have at least some reference values at the back of the cylinder. The values
agree quite well with those of the calculations and those of the other experiments,
whereas for the case of the 4 m high wave the values are systematically too high. For
the last four rows near the back of the cylinder the differences between the Contento
measurements and the HYPAN calculations are 5 percent or less.

The problem with our calculations for this case is that they break down. After two
start up periods we can calculate another 2.8 periods using equation (A.1). Looking at
the 4 m case, where after one start up period the first two periods are still influenced by
start-up transients and the rest are stationary, one would expect a stationary solution
in the third period after start-up. At the backside of the cylinder the maxima are
reached in the first half of the period. This means that for the rows at 90 degrees
up till 180 degrees we can hope that there are no start-up transients any more in
the last period. The maxima at the frontside however are reached in the last fifth of
the period. This means that for the rows at 0 degrees up till 45 degrees the values
in the last period still include start up transients. Looking again at the 4 m case
for guidance, one should anticipate for a decrease of 2 till 3 percent before reaching
stationary values.

As with the 4 m case we had a look at the effects that certain changes in the
setup had on the outcome. The effects of changing the grid from a mixed grid to a
square grid are very small and comparable to the effects in the 4 m case. Changing
the strength of the beach has a larger effect, but again the effect is comparable to
what we see for the 4 m case: almost 7 percent.

A 3D overview of what happens around the cylinder during a period is given in
figure 3.23. It combines well with the 2D overview of figure 3.24. They do not start
at the same position in the period however: the first 3D picture is approximately
the eleventh 2D picture. To further complicate things: the first 3D snapshot is in
time the last one, but for the storyline of the period it was better to put it first. At
t/T = 0, 1, 2, . . . the wave crest is halfway the cylinder, at t/T = 1

2 , 1 1
2 , 2 1

2 , . . . the
wave trough is halfway the cylinder. The wave direction is from left to right. In
figure 3.23 the meshes connect the collocation points on the free surface. The hole in
the centre is the position of the cylinder and the cut from the cylinder to the outside
is the intersection of the free surface network with itself.

Now we describe what is happening in all the subfigures of figure 3.23. Fig-
ure 3.23(a): the wave trough is halfway the cylinder, the first run-up is starting. Fig-
ure 3.23(b): the wave crest is coming. A bump is forming in front. Figure 3.23(c): the
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bump is splitting into two little bumps, one on each side of cylinder. Figure 3.23(d):
the wave crest is now halfway the cylinder. The two little bumps have gone around
the cylinder and are now approaching each other at the back. Figure 3.23(e): the two
bumps bump into each other to produce a peak. At approximately the same time the
wave crest is also at the back of cylinder. Figure 3.23(f): the wave crest is moving
away from the cylinder. The peak has collapsed and has produced some secondary
waves, including two bumps going around the cylinder in the other way. Could be
considered to be the original bumps. Figure 3.23(g): the two bumps are returning to
the front, but go sideways away from the cylinder. The wave trough is approaching
the cylinder.

In figure 3.24 there are 15 two-dimensional snapshots from 1 period, starting at
t/T = 2.80. They have the wave elevation on the cylinder plotted as a function of
the horizontal angle. An angle of 0 degrees is at the front of the cylinder, and an
angle of 180 degrees is at the back of the cylinder. The wave elevation is normalised
with respect to half of the incoming wave height. For reference the linear solution of
an infinite cylinder is included, see the thin line. The dots are the collocation points
on the first row on the free surface near the cylinder. The time, t/T , of the first
picture in each row is respectively: 2.8, 3.0, 3.2, 3.4, and 3.6. Thus the wave crest
is halfway the cylinder at picture four, the wave trough is there between pictures 10
and 11. In these snapshots the time evolution of the two bumps is easily seen. In the
first snapshot they have just been created and are heading towards the back of the
cylinder. In the fifth snapshot they have collapsed together to one peak at the back.
It is clear that the grid resolution is very low for this kind of event. The peak collapses
in the seventh snapshot, creating again two outgoing waves. Those two bumps move
back towards the front of the cylinder. Before they reach the front they go sideways.
In the eleventh snapshot we can see the last remains of the bumps and the start of
a new cycle. It is obvious that there are clear differences between the fully nonlinear
computation and the linear diffraction solution, however, as a kind of average that
linear solution is not too bad.

The question is, of course, why does the calculation break? Figure 3.25 shows
a number of snapshots of the waterline on the cylinder. The snapshots have a true
aspect ratio, and the angle and the position of the steepest slope are indicated. There
are a few things worth noticing. First, when the wave crest moves to the back of the
cylinder, there is a maximum slope with an angle of almost 50 degrees. Secondly,
the peak at the back of the cylinder, created when the two bumps bumped into each
other, has an even steeper angle of almost 70 degrees, whereas there are only grid
points at the bottom and at the top of the peak. As a last thing we notice that in
the last snapshot before the crash we have a steep slope with an angle of more than
50 degrees with some wiggles behind it.

Related to figure 3.25, is figure 3.26. Here we see the maximum slope in the
waterline around the cylinder as a function of time. For comparison, figure 3.27
shows the same for the 4 m high wave. Note that changes of the maximum slope in
time do not imply that they occur for the same physical “bump”: they only show
the evolution of one particular slope for the time it is the steepest. In the case of
the 8 m high wave the crest to trough part of the periods (e.g. t/T = 3.0 till 3.5)
show comparable steepness as the trough to crest part of the periods (e.g. t/T = 2.5
till 3.0), except for the very high peak associated with the peak at the back of the
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cylinder. For the 4 m high wave on the other hand, the crest to trough periods have
much lower steepness then the trough to crest periods, only the peak can keep up. The
4 m high wave case is also much smoother, probably because the 8 m high wave case
has not enough resolution to deal nicely with the peak at the back and the resulting
secondary waves. The 8 m high wave case gets less and less smooth in time, until
it breaks down. The figures suggest that this breakdown is not because of a steady
steepening of the largest slope, but because the current slope cannot be dealt with
properly, resulting in a kind of wiggles that get very steep locally. It is not strange
that we have problems dealing with these steep slopes, given the low resolution and
the eulerian grid motion. This does not exclude the possibility that these wiggles
are a sign of physical instabilities that cause breaking in the real world too. Ferrant,
however, claims that he can calculate these kind of waves in this situation and that
he has seen experimental data that confirms the no breaking behaviour8.

8Source: personal communication
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Figure 3.19: The 8 m high wave with the circular cylinder. Maximum wave elevation
at the extended ISSC wave probe positions. Comparison with experimental data and
the other calculations.
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Figure 3.20: The 8 m high wave with the circular cylinder. Maximum wave elevation
at the extended ISSC wave probe positions. Maximum per wave period starting at
period 3.
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Figure 3.21: The 8 m high wave with the circular cylinder. Maximum wave elevation
at the extended ISSC wave probe positions. Miscellaneous changes.
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Figure 3.22: The 8 m high wave with the circular cylinder. Maximum wave elevation
at the extended ISSC wave probe positions. Different beach strengths
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(a) t/T = 3.50

(b) t/T = 2.58

(c) t/T = 2.80

(d) t/T = 3.00
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(e) t/T = 3.08

(f) t/T = 3.18

(g) t/T = 3.40

Figure 3.23: The 8 m high wave with the circular cylinder: 7 snapshots of the free
surface from one period. The vertical direction is in true ratio with the horizontal
directions. The colours are a measure of the difference with the incoming wave.
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Figure 3.24: Surface elevation on the circular cylinder in the 8 m high wave given
in 15 frames from one period. Normalised elevation versus angle in degrees. Front
at 0 degrees, back at 180 degrees. The dots are the collocation points nearest to the
cylinder, at 1.04 times the radius. The thin line is the linear solution.
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Figure 3.25: Four snapshots of the waterline with true aspect ratio and maximum
slope with angle indicated. On the left of the figures is the front of the cylinder, on
the right is the back of cylinder.
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Figure 3.26: The maximum slope on the waterline as a function of time for the circular
cylinder in the 8 m high wave.
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Figure 3.27: The maximum slope on the waterline as a function of time for the circular
cylinder in the 4 m high wave.
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The 4 m high wave with the square cylinder

For the square cylinder case there are five rows of wave probes instead of the 7 rows
for the circular cylinder. The angles of those rows are the same, except for the two
that are missing. We use the same figure format, leaving the subfigures for the missing
rows empty. The linear solution is for the infinite circular cylinder. It is put in here
as a rough reference.

The calculation breaks down after 39.3 seconds or 4.37 periods. When using
equation 6.22 from Broeze (A.1), the calculation can be continued for at least ten
periods. The results are given in figure 3.28 (mixed grid). The ISSC measurements
are higher than the HYPAN calculations, as was the case for the circular cylinder
cases. For all rows the deviations are 10 percent or less. The calculations from
Ferrant are clearly lower than the HYPAN calculations in this case. It would be nice
to have some data for comparison at the back of the cylinder. The results at the front
and at the back are not the same for every period, and this dependends on the choice
of grid. The calculation without using Broeze has not yet converged and can therefore
hardly be used for comparison. Figures 3.29 and 3.30 give the maximum per period
for the calculations using a square and a mixed grid respectively. At the wave probe
closest to the front of the cylinder the maximum per period rises from 1.4 to 1.6 while
going from period number 4 till period number 10. There is no sign of convergence.
The other wave probes at the front remain approximately stable. At the back of the
cylinder the two calculations differ. The calculation with a mixed grid starts out with
values around 1.3, but jumps to 1.4 in period No 7, settling down around 1.45. The
calculation with the square grid on the other hand, also starts out at around 1.3,
but in period number seven the values drop towards 1.25. In both cases the second
wave probe more or less joins the behaviour of the first wave probe (counting from
the cylinder). This is clearly dubious behaviour. At the back it seems to be stable,
at the front it looks unstable. Looking at the animations of the calculations no clear
reason or mechanism can be found.

Figure 3.32 is the same as figure 3.23 but now for the 4 m high wave on the square
cylinder. Because this calculation runs longer we took the snapshots at time points
that were exactly two periods later. It is probably best to look at it together with
figure 3.33, which is the equivalent of figure 3.24. The extra grid lines denote the
beginning and the ending of the curved corners. The horizontal axis is in degrees and
is therefore not one-to-one to distance for the square. The line is again the linear
solution for the infinite circular cylinder. We see that there is more detail in this case.
In the first picture we now have two bumps instead of one for example. It is also clear
that we have quite a low resolution for the things that are happening. Notice that
the position of the corner areas is also indicated by the behaviour of the waterline.

The maximum slope as a function of time is given in figure 3.34 for the calculation
without Broeze (eq. (A.1)) and in figure 3.35 for the calculation with Broeze. Without
Broeze we see from t/T = 3.5 till 4 much more peaks than from t/T = 2.5 till 3.
However, breakdown at t/T = 4.4 seems to be at a relative quiet moment. Notice
also the large minimum at t/T = 4. With Broeze on the other hand we do see an
increase in peaks from the fifth period onwards, but the calculation does not break.
A little later the minimum slope starts to go up and up, together with some clear
peaks in the last three periods. For the same calculation but with a square grid the
same three peaks are there but now in the other half of the period. The amount of
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peaks in these pictures is much higher than for the 4 m high wave on the circular
cylinder, as shown in figure 3.27. It indicates that there are much more small waves
running around. This was to be expected: more small structure in the shape of the
object should cause more small structure in its diffraction pattern. With the current
resolution around the cylinder we have trouble dealing with that.
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Figure 3.28: The 4 m high wave with the square cylinder using the mixed grid.
Maximum wave elevation at the extended ISSC wave probe positions. Comparison
with experimental data and the other calculations.
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Figure 3.29: The 4 m high wave with the square cylinder using the mixed grid.
Maximum wave elevation at the extended ISSC wave probe positions. Maximum per
wave period starting at period 3.
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Figure 3.30: The 4 m high wave with the square cylinder using the square grid.
Maximum wave elevation at the extended ISSC wave probe positions. Maximum per
wave period starting at period 3.
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Figure 3.31: The 4 m high wave with the square cylinder. Maximum wave elevation
at the extended ISSC wave probe positions. Miscellaneous changes.
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(a) t/T = 5.50

(b) t/T = 4.58

(c) t/T = 4.80

(d) t/T = 5.00
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(e) t/T = 5.08

(f) t/T = 5.18

(g) t/T = 5.40

Figure 3.32: The 4 m high wave with the square cylinder: 7 snapshots of the free
surface from one period. The vertical direction is in true ratio with the horizontal
directions. The colours are a measure of the difference with the incoming wave.
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Figure 3.33: Surface elevation on the square cylinder in the 4 m high wave given in
15 frames from one period. Normalised elevation versus angle in degrees. Front at
0 degrees, back at 180 degrees. The dots are the collocation points nearest to the
cylinder, at 1.04 times the radius. The thin line is the linear solution for an infinite
circular cylinder.
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Figure 3.34: The maximum slope on the waterline as a function of time for the square
cylinder in the 4 m high wave. Without Broeze.
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Figure 3.35: The maximum slope on the waterline as a function of time for the square
cylinder in the 4 m high wave. With Broeze.



72 3. Three-dimensional diffraction calculations

A range of amplitudes put together

In figure 3.36 four different heights of the incoming wave are plotted together. As a
linear starting point we take a wave height of 0.1 m. The other wave heights are 1 m,
2 m, 4 m, and 8 m, for a wavelength of approximately 128 m. All these calculations
use the cylinder length of the ISSC study: 24 m. They use a mixed grid and a full
beach. As a reference again the linear solution for the infinite cylinder is included.
In the first three rows at the front of the cylinder only the 4 m and especially the
8 m high wave deviate significantly from the linear solution. In the last four rows
even the 1 m wave deviates clearly from the linear case. For the row at an angle of
157.5 degrees the results for the 4 m and 8 m wave are almost the same. For the rest
of the rows there is a large difference between them. Near the front of the cylinder
the 4 m wave deviates not too much from the linear case, but near the back it does.
Especially at the back where the difference is around 30 percent.

To have a better look at the difference between the linear solution and the calcu-
lation with a wave height of 0.1 m see figures 3.37 and 3.38. In the last figure the
vertical axis is stretched to have a more detailed view. There are two major and two
minor factors involved. The most important are the length of the cylinder and the
presence or absence of a beach. The two less important factors are the choice of grid
and the start-up procedure. In the legend lin stands for the analytical linear solution,
long for the 48 m long cylinder, longer for the 96 m long cylinder (which gives almost
exactly the same results as the long one, see figure 3.9), mixed for the mixed grid,
nobeach and without for no beach but with a Sommerfeld radiation condition, and
106 for starting up with the linear solution. Figure 3.38 shows that having a short
cylinder instead of a long one and having a beach instead of no beach both have a
large effect but of opposite sign. For some of the rows the effect of the length of the
cylinder is small or even absent. The beach has an effect everywhere. The start-up
procedure only has a significant effect at the front two rows. The effect of the grid
depends on the other factors, but is everywhere quite small. An interesting effect is
seen in the last two rows for the calculations using the linear start-up procedure: the
mixed grid deviates about 1 percent at the third measurement point.

Returning to the question of how close our calculation with the 0.1 m wave is to
the linear solution: when taking a long enough cylinder while leaving out the beach
the result of our calculation is within almost 1 percent of the linear solution.
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Figure 3.36: A range of different wave heights with the circular cylinder. Maximum
wave elevation at the extended ISSC wave probe positions.
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Figure 3.37: A look at how the different attempts to mimic the linear diffraction
solution are doing.
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Figure 3.38: A look at how the different attempts to mimic the linear diffraction
solution are doing. ZOOMED
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3.3.2 EXPRO-CFD wave profile measurements

The EXPRO-CFD project is a collaborative project aimed at making substantial
improvements to techniques for the prediction of non-linear and extreme wave loads
and responses of offshore floating production systems. The three-year project started
in February 2001 and is supported by the European Commission as part of its Fifth
Framework programme Growth 2000. Within that project wave profile measurements
were carried out around a cylinder in regular waves. Some of their wave cases were
appropriate for the setup developed for the ISSC calculations.

We chose the regular wave case with L/D = 10 and L/2a = 20, here L is the
wavelength, D the diameter of the cylinder, and 2a the wave height. When the
wavelength is 128 m, the diameter is 12.8 m, and the wave height will be 6.40 m. For
the incoming wave we took a Rienecker & Fenton wave with a period of 9.00 seconds
and a wave height of 6.40 m. This gives a wavelength of 129.6 m. The diameter of the
cylinder was taken to be 12.8 m. The water depth could be considered to be infinite.
The wave profiles were measured in two radial planes: one at the front, at an angle of
0 degrees with the incoming wave, and the other one at an angle of 45 degrees with
the incoming wave. The free surface was illuminated by a laser sheet in the radial
plane to be measured. This was then recorded by two video cameras placed next to
each other and looking to the side of the radial plane. Each camera covered its own
piece of the illuminated free surface. The free surface was then extracted using image
analysis software. The two cameras together covered a radial width of approximately
one cylinder diameter outside of the cylinder.

Compared to the setup of the ISSC calculations, only the diameter and the length
of the cylinder are changed. The length of the cylinder was taken to be 48 m to mimic
an infinite cylinder since the cylinder in the measurements extended to the bottom
of the basin.

Figures 3.39 till 3.44 show for both the radial planes at 6 different radial positions
the wave elevation as function of time as obtained from the wave profiles and as
obtained from the HYPAN calculations. From the time series of a wave probe at
the same wave phase as the cylinder the first decent maximum and the period of the
experimental incoming wave are established, see figure 3.46. The plotted time series
run from that first decent maximum till the last profile taken. The period of the
incoming wave in the experiments is 5 percent longer than it is in the calculations. In
the figures the period of the calculations is enlarged with the same factor to correct
for this. From the wave profile at each time step the elevation in six radial positions is
taken: r/D = 0.503, 0.596, 0.767, 1.000, 1.250, and 1.500. This gives the six time series
for each profile angle. The best9 period from the calculations is synchronised with
the incoming wave and repeated to compare with the different experimental periods.
The synchronisation depends on the determination of the first decent maximum. In
order to put the calculations nicely in sync with the experiments a shift of 5 frames
to earlier times was needed on top of the calculated synchronisation. This correction
is the same for both wave profile angles. The incoming waves stay nicely in sync with
each other, with no sign of changing periods. The reason for the above deviation is
unclear. The not so accurate determination of the position in time of the first decent
maximum could be the cause, but then one would expect a different deviation for

9The fourth period, after two start-up periods. The calculation breaks at t/T = 4.8.
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both profile angles.
For the radial plane at an angle of 0 degrees there is a difference in the amplitudes

of the measurements and the calculations in figures 3.42, 3.43, and 3.44 that can be
traced back to the different alignment of the two cameras in that case, as suggested
by figure 3.45(a).

The difference in the shape and the timing of the bumps in the wave profiles at 90
degrees can probably be traced back to the sharp (in space) experimental bump and
the low resolution in the calculated bump, see figure 3.45(b). Figure 3.47 shows that
it is not likely that this problem is caused by a lack of convergence: in a time series
modulo one period all periods are plotted on top of each other and after start-up the
position of the bump does not change significantly.

The noise or snow in the experimental results is caused by bad wave profiles. With
this we mean that the data representing a wave profile at a certain point in time is
often partially or completely nonsense. It seems that getting reliable wave profiles is
not that easy yet.

All in all the HYPAN calculations compare very well with the measurements.
Where they disagree it can be either traced back to inaccuracies in the experimental
setup or to the limited resolution of the calculations. The greatest point of concern
is the breaking down of the calculations. Whether this can be attributed to physical
instabilities, lack of resolution, or something else, remains yet to be determined. Some
kind of video material of the experiments could be helpful in establishing whether the
wave is already showing signs of breaking.



78 3. Three-dimensional diffraction calculations

500 600 700 800 900 1000 1100 1200
−1.5

−1

−0.5

0

0.5

1

1.5
w0n3 h640fb 0000 r/D = 0.503

η/
(H

/2
)

frame number (∆t = 0.0167 sec.)

(a) 0 degrees

700 750 800 850 900 950 1000 1050 1100 1150 1200
−1.5

−1

−0.5

0

0.5

1

1.5
w90n1 h640fb 0900 r/D = 0.503

η/
(H

/2
)

frame number (∆t = 0.0167 sec.)

(b) 90 degrees

Figure 3.39: Time series at a radius of r/D = 0.503; EXPRO-CFD wave profile
data (dots) and HYPAN calculation (line). The small dots with the same size as the
gridline dots are the incoming R&F wave.
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Figure 3.40: Time series at a radius of r/D = 0.592; EXPRO-CFD wave profile
data (dots) and HYPAN calculation (line). The small dots with the same size as the
gridline dots are the incoming R&F wave.
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Figure 3.41: Time series at a radius of r/D = 0.767; EXPRO-CFD wave profile
data (dots) and HYPAN calculation (line). The small dots with the same size as the
gridline dots are the incoming R&F wave.
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Figure 3.42: Time series at a radius of r/D = 1.000; EXPRO-CFD wave profile
data (dots) and HYPAN calculation (line). The small dots with the same size as the
gridline dots are the incoming R&F wave.
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Figure 3.43: Time series at a radius of r/D = 1.250; EXPRO-CFD wave profile
data (dots) and HYPAN calculation (line). The small dots with the same size as the
gridline dots are the incoming R&F wave.
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Figure 3.44: Time series at a radius of r/D = 1.500; EXPRO-CFD wave profile
data (dots) and HYPAN calculation (line). The small dots with the same size as the
gridline dots are the incoming R&F wave.
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Figure 3.45: Two snapshots of a wave profile to indicate the quality of the EXPRO-
CFD measurements (line of stars) and the resolution of the HYPAN calculations
(crosses).
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Figure 3.46: The incoming experimental wave, as measured by a wave probe at the
same phase as the cylinder, compared to the incoming Rienecker & Fenton wave of the
calculations. The time periods in which the wave profiles were obtained are indicated.
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Figure 3.47: Dependence of the numerical results on which period one chooses to use
for the figures comparing the numerical and the experimental time series.
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3.4 Conclusion

We can reproduce the linear solution. Almost perfectly when looking only at the max-
imum wave elevation at the extended ISSC wave probe positions, and with deviations
of around 2 percent when looking at the maximum error. This uses the Sommerfeld
radiation condition as absorbing condition and the linear solution as start-up proce-
dure. Changing the grid has a very small effect. In practical calculations we need
a different start-up procedure and a beach. This start-up procedure, starting with
the incoming wave and an open cylinder that changes slowly to a normal closed one,
has a small effect on the maximum wave elevation at the extended ISSC wave probe
positions. The beach has an effect of around 2 percent and changing the grid still has
a small effect.

Also for the more practical wave heights of moderate and high steepness the results
are good. The HYPAN calculations are within 10 till 5 percent of the measurements
for the ISSC study. The details in the experiments for the EXPRO-CFD study are
reproduced very well, especially considering the relatively low resolution of the calcula-
tions. There are some problems of course, mainly related to the limited computational
resources. The strength of the beach, for example, has a significant influence, most
probably because the beach is too close and too short. Another problem is that the
very large wave heights break after a number of periods. A lack of resolution prevents
us from making definitive statements about this.

The conclusion is therefore that the current setup is satisfactory. However, for
real practical calculations there is a need for more resolution and larger domain sizes.
For example, when considering irregular waves both the large wavelengths and the
short wavelengths have to fit onto the grid, putting demands on both the minimum
domain size and on the minimum resolution. For thoughts on how to deal with this
see chapter 6.
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Chapter 4

Three-dimensional diffraction
calculations with a
free-floating body

Using the results of the previous chapter we can now extend that work to free-floating
bodies. Berkvens already had a free-floating sphere. He did not have an incoming wave
yet. He did damping calculations and forced motion calculations both using only the
Sommerfeld radiation condition as an absorbing boundary condition. We will set up
the diffraction calculations for such a sphere. While checking our absorbing boundary
conditions we can improve Berkvens’ damping calculations of a sphere with the help
of a beach and a larger domain.

4.1 Setup

The basic setup for these diffraction calculations with a free-floating body is the same
as for those with a fixed body. There are some extensions needed however. Starting
up, for example, is a little bit more complicated, because a free-floating body does
not have a Neumann boundary condition, prescribing the normal velocity on the
boundary. Also the motion of the grid needs some attention. As the position and
the orientation of the object are no longer fixed, the grid points around the object
cannot be kept fixed either. They should, in some way, move along with the object.
Of course, when the object is moving over large distances one can either move the
whole grid along with it, or you can restrain the position of the object somewhat.
Because our prime interest is in moored offshore structures, the latter is the natural
thing to do. A last point of attention are the absorbing boundary conditions. In the
case of a fixed object we had an incoming wave and the diffracted wave, both with
the same basic frequency. With a free-floating object we still have those waves, but
also the radiated waves caused by the motions of the object. This has to be taken
into account when tuning the beaches.

89



90 4. Three-dimensional diffraction calculations with a free-floating body

4.1.1 Start up

For the fixed cylinder we introduced the cylinder slowly into the wave instead of
introducing the wave slowly on to the cylinder. This was done by prescribing as a
normal velocity on the cylinder a fraction of the appropriate velocity component of
the incoming wave, the fraction decreasing slowly from one to zero. For a free-floating
object however, the velocity follows from the acceleration which is calculated using
∇2φt = 0. To adjust the above procedure to this case is not trivial and whether it
is worth doing so is questionable. Instead, we use a simple practical solution: first
we keep the sphere fixed and use the procedure for a fixed object, and then when
having the sphere introduced slowly into the wave we let it go free by prescribing the
free-floating body boundary condition.

4.1.2 Grid motion

With respect to the fixed cylinder only the grid motion on the object and the grid
motion on the free surface change. A more elaborate and more general treatment of
the grid motion is presented in chapter 2.

Sphere

The boundary between the wetted and the dry part of an object is called the waterline.
The waterline follows from the intersection of the free surface with the object. The
grid on the sphere is generated from the waterline at every geometry update.

Free surface

For the motion of the grid on the free surface we use a mixed eulerian lagrangian
approach with respect to the sphere. Near the sphere a point moves along a meridian
of a virtual sphere obtained from the original sphere by scaling such that the point
lies on the new sphere. Further away it shows a fraction of that behaviour, and far
away it moves eulerian: it only moves in the vertical direction. The freedom of motion
along the intersection line of the water tangent plane and the body tangent plane is
used to implement this.

4.1.3 Mooring system

In the offshore business free-floating objects mostly need to be at a specific stationary
position. For example, an FPSO above an oilwell or a shuttle tanker near an offloading
unit. This is accomplished by a mooring system, a dynamic positioning system or a
combination of the two. From a calculation point of view this is also a good idea. If
an object is cut loose in a fully developed wave it will get an average speed depending
on where in the period of the wave it was free to go. This speed is arbitrary and
inconvenient: the object will flow out of the domain or the domain has to move with
the object. It therefore is both realistic and convenient to keep the position of the
object somewhat constrained. We mimic a soft spring by prescribing a linear restoring
force to the middle of the domain. To be able to determine the equilibrium position
of the mooring system in a reasonable number of periods, an extra damping of 0.33
times the critical damping is applied in addition to the wave damping already there.
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The choice of the eigenfrequency of the mooring system of 0.10 rad/s satisfies the
criterium mentioned by Pinkster: ωinc/ω0,m > 5 for all incoming wave frequencies
ωinc. Using the amplitude response function of the mooring system, the effect of the
mooring system on the first order surge motions is estimated to be less than 1% for all
cases with ka ≥ 0.8. In the implementation of this mooring used for the calculations
in this chapter a small error was made. The effect on the results is considered to be
negligible, see the appendix, section A.3.

4.1.4 Beaches

In these calculations we not only have to absorb the incoming wave and the diffracted
waves, but also the waves radiating from the sphere going up and down. Because the
sphere is free-floating the frequency of the radiated waves will be more or less at the
resonance frequency. The length of the beach is again 32 m.

The first damping experiments of section 4.2.2 called big-beach were originally
meant to check the performance of the beach for the cylinder setup of chapter 3.
The Sommerfeld radiation condition is therefore tuned to the wave frequency of the
incoming wave used in those calculations: ωs = 0.70 rad/s. Together with a heave
eigenfrequency of 1.1 rad/s for the sphere with the 8 m radius, ωs/ω = 0.64. The
strength or slope of the beach b was chosen to be 0.25 · 103 kg · m−3 · rad · s−1. This
results in a bounce reflection for the waves radiated at the heave eigenfrequency of
about 5% and a total reflection that is a little bit higher, but still 5%.

The other damping experiments of section 4.2.2 called chk-damp were originally
meant to check the performance of the beach for the calculations of section 4.2.3 and
especially the calculations at heave resonance. The strength of the beach b was put
to 0.10 · 103 kg · m−3 · rad · s−1. The Sommerfeld radiation condition is tuned to the
incoming wave frequency ω = 1.1 rad/s. At a heave eigenfrequency of 1.14 the relative
tuning ωs/ω = 0.96. This results in a bounce reflection and a total reflection of about
2%. This is near optimal considering the slight mis-tuning. The bounce reflection
gives a good indication for the reflection of the diffracted waves for the calculations
in section 4.2.3, because the Sommerfeld radiation condition is for each calculation
tuned to the incoming wave frequency.

4.2 Testing

4.2.1 Grid motion without mooring

First we test the capabilities of the new grid motion algorithm that implements a
mixed eulerian lagrangian approach with respect to the sphere. For that we take the
setup used for the 4 m high wave of the ISSC study and replace the cylinder with
a sphere of the same diameter. It turns out that the average speed obtained by the
sphere is very dependent on the moment in time at which the sphere is free to go: if
the acceleration a = −ω2A sin(ωt+φ) then the velocity v = ωA cos(ωt+φ)+C, with
C such that v(t = 0) = 0 . The average velocity is equal to the integration constant
C, which is not necessarily equal to the initial velocity.
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(a) Close up of the grid around the sphere. The radius of the sphere is 12 m, the grid as used
in “drift-new”.
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(b) Trajectory of the centre of the sphere, no mooring. Radius of the sphere is
8 m, wave height is 4 m, wave period is 9 seconds.

Figure 4.1: See captions above
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(a) A deformed grid when the sphere is not restrained by a mooring system.
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(b) Close up of the same situation.

Figure 4.2: The grid movement algorithm can handle grid motions like this without
problems.
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4.2.2 Damping experiments

By performing a few damping experiments the performance of the beach can be
checked together with the quality of the floating body algorithm. Berkvens already did
some damping calculations, but as an absorbing condition he only used a Sommerfeld
radiation condition, which has problems absorbing the front of the wave train coming
from the sphere because of dispersion. See for example his figure 6.6. There the decay
is not monotonic, at around t = 40 the amplitude rises again for a moment, which
is an obvious sign of reflection. In his section 6.4.2 he compares the added mass and
damping coefficients calculated from his experiments to those obtained by Pinkster,
and gets a deviation of a factor of two. This is a calculation error however: he mixed
up the dimensionless values. From the results given in his thesis the calculation can
be repeated and the correct values are: α = 0.400 and β = 0.275. The deviations for
these values are respectively -6% and +12%.

For our calculations we first took a standard grid (square) and a sphere with a
radius of 8 m. The beach setup was described in section 4.1.4. The grid on the
sphere had 6 panels in the height of the side networks. For comparison we use the
linear results from the thesis of Pinkster. There are two cases: one with no special
care1 taken for the pressure integration around the waterline, figure 4.3(b), and one
with that special care taken, figure 4.3(a). The one without the special care had an
initial displacement of 1 m. The one with the special care had an initial displacement
of 0.1 m. Only in the end of the decay there is a difference between the two: for
the one without, the equilibrium position is not exactly 0, but that is only after the
amplitude has decayed to less than one-hundredth of its starting value. Changing
the equilibrium position in the calculations to the new value, as done in figure 4.3(b),
helps. To completely correct for it one needs a linear function from 0 to a fraction of
the final position. After this correction the two graphs are right on top of each other.

It is very clear that we have three different regions in the decay. None of which
agrees completely with the results from Pinkster: Pinkster is somewhere in between.
This behaviour can be related to the following: in the beginning the sphere has still
to create the wave system, later on reflections return from the beach and in the end
the movements are so small that they are sensitive to anything.

In the legends we give the values of α and β for the four different lines: first the
line through all points, then the other lines starting from the left. The three values per
line are the lower bound, the average, and the upper bound. The Pinkster values are
given for the four different frequencies coming from the different lines. The difference
between those frequencies is small compared to the error in those frequencies. The
effect is therefore small. To explain the large error bounds we look at the line through
all points from figure 4.3(a). The relative error in α is about 20 percent and the relative
error in β is around 10 percent. The sources of those errors are the frequency, with a
relative error of around 3 percent, and the slope, with for this case also a relative error
of around 3 percent. It is obvious that the error in the slope will be less for the other
lines. α depends on the squares of those two quantities, multiplying their relative
errors by a factor of two. Because α is formed by the subtraction of two similar
quantities, the relative error is multiplied even more: for the current values with a

1Calculate only the difference with the equilibrium situation. This means that most of the large
hydrostatic contribution can be calculated analytically. See the thesis of Berkvens.
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factor of around 3.5. The total error in α resulting from the error in the frequency
is then around 20 percent. β depends on the third power of the frequency and on
the square of the slope and has no subtraction of two terms. The total error in β
resulting from the error in the frequency is then around 10 percent. For an indication
of where the error in the frequency is coming from, see figure 4.5(a) and later on in
this section.

We also did two damping experiments with the setup as used for the calculations in
section 4.2.3. This means that the grid is mixed, that there are 12 panels in the height
of the side networks on the sphere, that the strength of the beach is 0.10 · 103 instead
of 0.25 · 103, and that special care is taken for the pressure integration around the
waterline. The Sommerfeld radiation condition is tuned to the incoming wave. Since
we were especially interested in the situation at heave resonance, we took the setup
for ka = 1.0, which means that the Sommerfeld radiation condition is (approximately)
tuned to the resonance frequency of the sphere. At ka = 1.0 we have two geometry
setups: one for a sphere with a radius of 8 m and one for a sphere with a radius of
12 m. The domain size and the length of the beach are the same in both cases. Both
spheres get an initial displacement of 1 m. The results are presented in figure 4.4.
The format is the same as used in figure 4.3.

First we notice that there are no problems with the equilibrium position. This
means that the problem as mentioned above is related to the choice of pressure inte-
gration and not to the initial displacement of the sphere. Then there is the strange
behaviour of regions with different slope. For the 8 m sphere we see something similar
in the beginning. For the 12 m sphere we hardly see anything. It should be noticed
that the 12 m sphere is both absolutely and relatively closer to the start of the beach
and that the beach is relatively shorter. It is clear from these experiments that the
sphere is decaying monotonically all the way down to amplitudes a factor of 100,000
smaller then the initial displacement. But also in these cases we have error bounds
that are quite large. We will concentrate on the lines through all points here. For the
8 m sphere we then have an α of 0.428 and a β of 0.19. The 12 m sphere gives an α
of 0.450 and a β of 0.20. The reference data from Pinkster gives an α of 0.426 and
a β of 0.245. This implies for the 8 m sphere a deviation of 0.5 percent for α and a
deviation of 20 percent for β. For the 12 m sphere the deviation is 5 percent for α and
20 percent for β. Giving a similar comparison for figure 4.3 is problematic, because of
the arbitrary choice of which region one should take. α for the 8 m sphere would be
somewhere between 0.40 and 0.44. β would be somewhere around 0.29. This would
mean a deviation of less than 5 percent for α and a deviation of around 20 percent
for β. In this case β is larger however instead of smaller. Therefore it is reasonable to
say that the added mass coefficient deviates less than 5 percent from the value given
by Pinkster, which is reasonable. The situation for the damping coefficient is less rea-
sonable however: we get both values of 20 percent less and of 20 percent more than
the value given by Pinkster. For the 12 m sphere we do get a more or less consistent
value for the damping coefficient of 0.20 plus or minus 5 percent. This could explain
the deviation of 10 percent in the heave amplitude at resonance, see section 4.2.3.

Figures 4.5(a) and 4.5(b) give an indication of the raw data for the determination
of the frequency. In these figures the time between zero-crossings (in terms of time
steps) is plotted as a function of the period number. Figure 4.5(a) is for the 8 m
sphere and the mixed grid, but it gives also a good indication for the situation in
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figures 4.3(a) and 4.3(b). The time of the zero-crossing is determined by a straight
line through the two points nearest to that crossing, but even then there is a periodic
deviation with an amplitude of approximately half a time step. Figure 4.5(b) however
shows that that does not need to be. Further investigation should show whether this
behaviour is caused by reflections or by something else.
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(a) Starting with a small deviation from equilibrium of 0.1 m. IGRAV=0.
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(b) Starting with a larger deviation from equilibrium of 1 m. IGRAV=1.

Figure 4.3: Free damping experiments with a sphere with a radius of 8 m. The
logarithm of both the maximum and the minimum values as a function of time.
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(a) Sphere with a radius of 8 m.
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(b) Sphere with a radius of 12 m.

Figure 4.4: Free damping experiments with the same set up as used for the “drift-
new” calculations at ka = 1.0. The logarithm of both the maximum and the minimum
values as a function of time.
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(a) Sphere with a radius of 8 m.
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(b) Sphere with a radius of 12 m.

Figure 4.5: Determination of frequency: time in timesteps between zerocrossings
plotted as function of the period number.



100 4. Three-dimensional diffraction calculations with a free-floating body

4.2.3 Comparison with linear diffraction theory, including sec-
ond order drift effects

Now that we have tested the setup of the absorbing boundary conditions, the complete
setup for doing diffraction calculations with a floating sphere can be tested. For this
we compare with linear diffraction results from the thesis of Pinkster. We have a look
at all the relevant RAO’s (Response Amplitude Operator): for surge and for heave,
both the amplitude and the phase. Pinkster also computed the low-frequency part of
the horizontal drift force, which only depends on the first order quantities.

For this comparison we need to do calculations for a range of frequencies. This
causes problems because of our limited resolution and domain size. The relevant
range of wave numbers goes from ka = 0.4 up till ka = 1.5, where a is the radius
of the cylinder and k the wave number of the incoming wave. The ka = 0.4 case
corresponds to the wave cylinder combination of the ISSC study. By allowing for less
panels per wavelength on the outer boundary, 10 instead of 25, we can get to about
ka = 1.0. By taking a larger sphere of 12 m instead of 8 m, values of ka = 1.0 up till
ka = 1.5 become possible. This at the cost of effectively reducing the domain size and
thus putting a smaller beach closer to the sphere. The ka = 1.0 case is calculated for
both the two radii of the sphere to assess the inaccuracies involved. To get an idea of
the possible nonlinearities up to four different wave heights have been calculated for
some wave numbers. See table 4.1. The smallest wave height of H = 0.25 m has a
steepness H/λ of 0.003 for ka = 1.0 and a = 12 m.

To quantify the effect of the lack of resolution we have included calculations for
an open fixed sphere with an incoming Rienecker & Fenton wave for each frequency.
The results are presented in figures 4.29 till 4.38. For each figure there are three
subfigures. The first one shows the maximum deviation from the prescribed incoming
wave after three periods. The second one shows a snapshot of the deviation from the
incoming wave at t/T = 3.25. The third subfigure gives the maximum deviation from
the incoming wave as a function of time for the whole free surface, for the part near
the sphere, and for the rest of the free surface. The format of these figures is similar
to the ones presented in chapter 3. These figures clearly show that the low resolution
at higher frequencies is a problem, but the maximum error near the sphere remains
less than around 3.5 percent except for ka = 1.5 where it is 4.5 percent.

The drift force on the sphere is determined in two different ways. In the first
method we determine the equilibrium position of the mooring system from the time
series of the horizontal coordinate of the centre of mass. This can be done in a rea-
sonable number of periods, because we added some damping to the mooring system.
In the second method we calculate the average of the horizontal force. Both give
approximately the same answer, except for the calculation at ka = 1.5.

The results for the RAO’s and for the horizontal drift are presented in figures 4.6
up till 4.9(a) and in tables 4.1 and 4.2. Most results are as close to the linear solution
as can be expected from the quality of the incoming waves and it is nice to see the
convergence towards the/a linear solution with decreasing wave heights. The heave
amplitude and the mean horizontal drift force show differences however. At heave
resonance the heave amplitude is significantly larger for the big sphere. For the small
sphere the deviation from the linear results is 2.5 percent, which is acceptable given
the error in the representation of the incoming wave near the sphere of around 3
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percent. For the big sphere four different wave heights were calculated: 0.25 m, 0.50
m, 1.00 m, and 2.00 m; at a wavelength of about 75 m. The smallest two wave
heights give a heave amplitude that is 9 percent larger than the linear result. The
larger wave heights deviate more and more, here the nonlinearities begin to have their
effect. The higher resonance amplitude found for the big sphere is compatible with
the low damping found for that sphere. But if that is true then the relevant part of
figure 4.3(a) for the small sphere is the line through the first five or six points. This
line gives similar results for all three damping calculations for the 8 m sphere. The
points further on represent very small amplitudes and are therefore very sensitive to
reflections even when those reflections are not large enough to destroy the monotonic
decay. There are also large deviations for ka = 1.2 (-8%) and ka = 1.4 (+8%).

The other exceptions are in the drift results, presented in figure 4.9(a). The stars
represent the results from the HYPAN calculations obtained from the equilibrium
position of the mooring system and the open squares are the results from the HYPAN
calculations obtained from the average horizontal force on the sphere. They do not
give the same results everywhere, at ka = 1.5 the difference is even 8 percent. The
reason for this is unclear, but the determination of the equilibrium position is a bit
difficult and indirect. The deviations from the linear results, represented by the line,
follow from table 4.1. Most deviations are between -15% and -20%. The difference
between the small and the big sphere at ka = 1.0 is 10%, with the 12 m sphere
closer to the linear result, but the deviation for the 8 m sphere is consistent with the
deviations for higher ka.

Let us investigate the above differences. At ka = 1.1, where the horizontal drift
force reaches a maximum, changing the wave height has hardly any influence on the
result (normalised with the amplitude squared). Furthermore, the representation of
the incoming wave is still quite good at ka = 1.1: near the cylinder the deviation
with the incoming wave is less than about 2 percent. When we put the damping in
the mooring system to 0, it had no significant effect. In the following we will have a
closer look to the contributions that make up the “linear” drift.

This horizontal drift is a combination of 4 terms, see figure 4.10(a): the largest
contribution comes from the relative wave height and is easy to calculate given the
relative wave height amplitude on the waterline, see equation A.19. The second
contribution is an integration of the velocity squared term over the mean wetted
surface, see equation A.20. It has the opposite sign of the first contribution. The third
contribution involves a product of the first order motions and a pressure gradient. The
sign depends on the phase angles of both quantities. In this case it will be directed
into the waves. The fourth contribution depends on the angular motions and is 0 in
our case. Figure 4.10(a) shows both the components as presented by Pinkster in his
thesis and the components as calculated by the current version of the linear diffraction
program DIFFRAC from MARIN.2 The second component of Pinkster deviates from
the second component of DIFFRAC. The contributions of Pinkster do not add up to
his total given, but that total is equal to that of DIFFRAC. Pinkster did compare
his total to exact second order analytical results, but had no analytical expressions
available for the components seperately, so the drawing error went unnoticed.

Figure 4.9(b) shows several versions of the first contribution to the horizontal drift.
The line is the line given by Pinkster in his thesis and the open squares are the points

2Pinkster used the then current version of the same program.
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carrying that line in his thesis. The crosses are calculated from the relative wave
amplitudes obtained by DIFFRAC. The circles are calculated from the relative wave
amplitudes obtained by HYPAN. For ka = 0.8 and ka = 0.9 the difference is again
around 20 percent, as was the case for the total drift, but the sign is now opposite for
ka = 0.8. These are very small drifts where the accuracy could be a problem. At ka
= 1.0 the results have kind of shifted compared to the total drift: the small sphere
now has a deviation of -7 percent instead of -17 percent, and the big sphere now has a
deviation of +7 percent instead of -8 percent. From ka = 1.1 onwards the deviations
are four percent or less, which is compatible with the wave accuracy. Because the
other two contributions are subtracted from the first contribution the relative errors
will be magnified. At maximum drift this means that a relative error of four percent
in the first contribution results in a relative error of 9 percent in the total drift. If the
other contributions would have a similar relative error and if those errors would not
cancel, we could get at a total relative error in the total drift that would approach
the 20 percent. This is not a very likely scenario however. And besides, for the first
contribution the deviations are both positive and negative, whereas for the total drift
the deviations are all negative for ka higher than 0.8.

In HYPAN the total hydrodynamic force ft on the sphere is build up from the
following components: a linear term fl coming from ρφt, the dynamic contribution fd
coming from 1

2ρ(∇φ)2, and the hydrostatic contribution fs coming from ρgz. Because
the hydrostatic contribution is already very large in equilibrium, it is better for the
accuracy to separate it in a contribution fs without the equilibrium value for ρgz and
a contribution fpb that corrects for the equilibrium values that were corrected too
much above the equilibrium waterline and that were not enough corrected for below
the equilibrium waterline, see the thesis of Berkvens [2]. In table 4.2 the amplitude
and the average are given for all these contributions. Table 4.3 gives an indication of
the accuracy of those values by giving their standard deviation. In figure 4.10(b) the
second component of the drift is plotted. The agreement between the results from
HYPAN (the average of fd) and from DIFFRAC is very good. The third (and first)
components cannot be calculated so easily from these HYPAN force components.

Finally, we have a more detailed look at the difference of the HYPAN solution
with the linear solution of the current problems, because the basic ingredients in all
the linear drift components are the solution on and the motion of the sphere. If two
potential methods calculate approximately the same wave elevation on the sphere for
a number of periods, then the rest of their solutions will also be approximately the
same3. Therefore the wave elevation on the waterline as function of time together
with the motions of the sphere itself provide a complete summary of the solution.
It was clear from animations of the whole waterline as a function of time that the
only major differences between the HYPAN calculations and the linear diffraction
calculations were an overall factor for the amplitudes and an overall phase difference.
To quantify the differences between the two calculations it was therefore sufficient to
have a look at the time series of the wave elevation at the front and at the back of
the sphere together with the time series of the motion of the sphere. In figures 4.11
up till 4.28 these time series are plotted for one period, the upper subfigure gives the
absolute wave elevation together with the motion of the centre of mass of the sphere,
the lower subfigure gives the relative wave elevation together with the position of the

3Think of the e−kz dependence of linear waves.
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mean free surface level. The solid lines are the HYPAN calculations and the dashed
lines are the linear diffraction results from DIFFRAC. Looking at these figures we
come to the following conclusions.

There are no obvious higher frequency components. For the low frequencies the
results are very nice, for the higher frequencies there are significant differences, see
the RAO’s. The phase differences with the linear calculations are quite large, but
the relative phase differences between the components is smaller. The deviations of
several percent in the RAO’s are understandable considering the representation of the
incoming wave and the limited beach. The relative wave motions on the sphere are
close enough to the linear values to calculate the first linear drift component within
10% of the linear result. But that is of course not how the mean drift force is calculated
in HYPAN. The correspondence between the second linear component of the drift
force and the average of the 1

2ρ(∇φ)2 contribution to the total hydrodynamic force is
very good. A direct calculation of the first and the third linear drift components from
the hydrodynamic force contributions in HYPAN is difficult, but could be worthwhile
if possible.
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Figure 4.6: RAO for surge motion.
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Figure 4.7: RAO for heave motion
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Figure 4.8: Error in the phase part of the RAO, in degrees.
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Figure 4.9: The drift in the horizontal direction.
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112 4. Three-dimensional diffraction calculations with a free-floating body
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(a) Absolute wave elevations.
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(b) Relative wave elevations.

Figure 4.11: Wave height at waterline: at the front and at the back of the sphere,
together with the vertical position of the centre and the mean water level. Both
absolute and relative to the postion of the centre.
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(a) Absolute wave elevations.
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(b) Relative wave elevations.

Figure 4.12: Wave height at waterline: at the front and at the back of the sphere,
together with the vertical position of the centre and the mean water level. Both
absolute and relative to the postion of the centre.



114 4. Three-dimensional diffraction calculations with a free-floating body
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(a) Absolute wave elevations.
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(b) Relative wave elevations.

Figure 4.13: Wave height at waterline: at the front and at the back of the sphere,
together with the vertical position of the centre and the mean water level. Both
absolute and relative to the postion of the centre.
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(a) Absolute wave elevations.
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(b) Relative wave elevations.

Figure 4.14: Wave height at waterline: at the front and at the back of the sphere,
together with the vertical position of the centre and the mean water level. Both
absolute and relative to the postion of the centre.



116 4. Three-dimensional diffraction calculations with a free-floating body
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(a) Absolute wave elevations.
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(b) Relative wave elevations.

Figure 4.15: Wave height at waterline: at the front and at the back of the sphere,
together with the vertical position of the centre and the mean water level. Both
absolute and relative to the postion of the centre.
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(a) Absolute wave elevations.
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(b) Relative wave elevations.

Figure 4.16: Wave height at waterline: at the front and at the back of the sphere,
together with the vertical position of the centre and the mean water level. Both
absolute and relative to the postion of the centre.



118 4. Three-dimensional diffraction calculations with a free-floating body
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(a) Absolute wave elevations.
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(b) Relative wave elevations.

Figure 4.17: Wave height at waterline: at the front and at the back of the sphere,
together with the vertical position of the centre and the mean water level. Both
absolute and relative to the postion of the centre.
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(a) Absolute wave elevations.
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(b) Relative wave elevations.

Figure 4.18: Wave height at waterline: at the front and at the back of the sphere,
together with the vertical position of the centre and the mean water level. Both
absolute and relative to the postion of the centre.



120 4. Three-dimensional diffraction calculations with a free-floating body
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(a) Absolute wave elevations.
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(b) Relative wave elevations.

Figure 4.19: Wave height at waterline: at the front and at the back of the sphere,
together with the vertical position of the centre and the mean water level. Both
absolute and relative to the postion of the centre.
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(a) Absolute wave elevations.
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(b) Relative wave elevations.

Figure 4.20: Wave height at waterline: at the front and at the back of the sphere,
together with the vertical position of the centre and the mean water level. Both
absolute and relative to the postion of the centre.



122 4. Three-dimensional diffraction calculations with a free-floating body
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(a) Absolute wave elevations.
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(b) Relative wave elevations.

Figure 4.21: Wave height at waterline: at the front and at the back of the sphere,
together with the vertical position of the centre and the mean water level. Both
absolute and relative to the postion of the centre. Drift-new-2: drift-h050-ka11-a 12.
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(a) Absolute wave elevations.
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(b) Relative wave elevations.

Figure 4.22: Wave height at waterline: at the front and at the back of the sphere,
together with the vertical position of the centre and the mean water level. Both
absolute and relative to the postion of the centre. Drift-new-2-d0: drift-h050-ka11-
a 12.
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(a) Absolute wave elevations.
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(b) Relative wave elevations.

Figure 4.23: Wave height at waterline: at the front and at the back of the sphere,
together with the vertical position of the centre and the mean water level. Both
absolute and relative to the postion of the centre.
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(a) Absolute wave elevations.
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(b) Relative wave elevations.

Figure 4.24: Wave height at waterline: at the front and at the back of the sphere,
together with the vertical position of the centre and the mean water level. Both
absolute and relative to the postion of the centre.



126 4. Three-dimensional diffraction calculations with a free-floating body

200 201 202 203 204 205 206
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t [s]

el
ev

at
io

n 
/ (

H
/2

)

drift−h200−ka10−a_12: bol_drift_analysis: absolute elev.

water
front
back
equator
lin water
lin front
lin back
lin equator

(a) Absolute wave elevations.
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(b) Relative wave elevations.

Figure 4.25: Wave height at waterline: at the front and at the back of the sphere,
together with the vertical position of the centre and the mean water level. Both
absolute and relative to the postion of the centre.
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(a) Absolute wave elevations.
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(b) Relative wave elevations.

Figure 4.26: Wave height at waterline: at the front and at the back of the sphere,
together with the vertical position of the centre and the mean water level. Both
absolute and relative to the postion of the centre.
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(a) Absolute wave elevations.
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(b) Relative wave elevations.

Figure 4.27: Wave height at waterline: at the front and at the back of the sphere,
together with the vertical position of the centre and the mean water level. Both
absolute and relative to the postion of the centre.
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(a) Absolute wave elevations.

200 201 202 203 204 205 206
−3

−2

−1

0

1

2

3

t [s]

el
ev

at
io

n 
/ (

H
/2

)

drift−h200−ka11−a_12: bol_drift_analysis: relative elev.

water
front
back
equator
lin water
lin front
lin back
lin equator

(b) Relative wave elevations.

Figure 4.28: Wave height at waterline: at the front and at the back of the sphere,
together with the vertical position of the centre and the mean water level. Both
absolute and relative to the postion of the centre.
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(a) Maximum deviation from the prescribed in-
coming wave elevation in the time period from
t/T = 0 till t/T = 3.
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(b) The deviation from the prescribed incoming
wave elevation at t/T = 3.25.
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(c) Maximum deviation from the prescribed incoming wave elevation as a function
of time for the whole free surface, for the part near the sphere, and for the rest of
the free surface.

Figure 4.29: The incoming wave is prescribed also on the fixed sphere. There should
be only the incoming wave then.
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(a) Maximum deviation from the prescribed in-
coming wave elevation in the time period from
t/T = 0 till t/T = 3.
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(b) The deviation from the prescribed incoming
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(c) Maximum deviation from the prescribed incoming wave elevation as a function
of time for the whole free surface, for the part near the sphere, and for the rest of
the free surface.

Figure 4.30: The incoming wave is prescribed also on the fixed sphere. There should
be only the incoming wave then.
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(b) The deviation from the prescribed incoming
wave elevation at t/T = 3.25.
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(c) Maximum deviation from the prescribed incoming wave elevation as a function
of time for the whole free surface, for the part near the sphere, and for the rest of
the free surface.

Figure 4.31: The incoming wave is prescribed also on the fixed sphere. There should
be only the incoming wave then.
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(c) Maximum deviation from the prescribed incoming wave elevation as a function
of time for the whole free surface, for the part near the sphere, and for the rest of
the free surface.

Figure 4.32: The incoming wave is prescribed also on the fixed sphere. There should
be only the incoming wave then.
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0 1 2 3 4 5 6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
rf−h050−ka10−a_12: rf_err_eta: max diff with RF

m
ax

(η
 −

 η
R

F) /
 (H

/2
)

t/T

η
max

 rest of free surface
η

max
 near cylinder

η
max

 entire free surface

(c) Maximum deviation from the prescribed incoming wave elevation as a function
of time for the whole free surface, for the part near the sphere, and for the rest of
the free surface.

Figure 4.33: The incoming wave is prescribed also on the fixed sphere. There should
be only the incoming wave then.
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(c) Maximum deviation from the prescribed incoming wave elevation as a function
of time for the whole free surface, for the part near the sphere, and for the rest of
the free surface.

Figure 4.34: The incoming wave is prescribed also on the fixed sphere. There should
be only the incoming wave then.
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(b) The deviation from the prescribed incoming
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(c) Maximum deviation from the prescribed incoming wave elevation as a function
of time for the whole free surface, for the part near the sphere, and for the rest of
the free surface.

Figure 4.35: The incoming wave is prescribed also on the fixed sphere. There should
be only the incoming wave then.
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(c) Maximum deviation from the prescribed incoming wave elevation as a function
of time for the whole free surface, for the part near the sphere, and for the rest of
the free surface.

Figure 4.36: The incoming wave is prescribed also on the fixed sphere. There should
be only the incoming wave then.
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(b) The deviation from the prescribed incoming
wave elevation at t/T = 3.25.
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(c) Maximum deviation from the prescribed incoming wave elevation as a function
of time for the whole free surface, for the part near the sphere, and for the rest of
the free surface.

Figure 4.37: The incoming wave is prescribed also on the fixed sphere. There should
be only the incoming wave then.
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(c) Maximum deviation from the prescribed incoming wave elevation as a function
of time for the whole free surface, for the part near the sphere, and for the rest of
the free surface.

Figure 4.38: The incoming wave is prescribed also on the fixed sphere. There should
be only the incoming wave then.
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4.3 Conclusion

Although it is very difficult to have enough resolution for a range of incoming wave
frequencies, the quality of the solutions obtained is reasonable. For the amplitudes
of the heave motions the differences with the linear results are the largest. This can
be attributed to the limited quality of the beach setup as indicated by the free decay
experiments. In domains of this size doing any better is very difficult.

The difference between the HYPAN calculations and the linear4 results for the
mean horizontal drift force, of for example -20% at maximum drift, are not under-
stood completely. An indirect calculation of the first linear drift component using the
relative wave motions as calculated by HYPAN shows that a deviation of up to -10% in
the total drift force can be attributed to the deviations for the wave elevation near the
cylinder and to deviations in the motions of the sphere. The spread in the deviations
for the first linear drift component is larger however then the spread in the deviations
for the total drift force. It is therefore questionable whether these deviations for the
first linear drift component and those for the total drift have the same origin. The
calculation of the second linear drift component, using the velocity squared term in
the total hydrodynamic force, suggests that the accuracy of the calculation of the
total drift could be even better then suggested by the indirect calculation of the first
linear drift component. This would explain the different spread in the deviations for
the first linear drift component and in those for the total drift. This leaves a larger
part of the difference between the HYPAN calculations and the linear results for the
total drift unexplained however.

The effect of the different amplitudes of the incoming wave on the results strongly
suggests that for the smaller wave heights the current calculations can be considered
to be in the “linear” regime, which is compatible with the very small steepness of
the smallest incoming waves. The fully nonlinear potential theory calculations should
therefore coincide with the linear results used for reference which are exact up to
second order in the incoming wave amplitude for the mean horizontal drift force.
Since these are asymptotic error estimates, there is room for some scepsis however.

Future investigations should of course correct the implementation of the mooring
forces, although that should have no significant effect. It is also a good idea to try to
do a direct calculation of the first and the third linear components of the drift force
from the quantities that determine the hydrodynamic force in HYPAN. But most
importantly, the representation of the incoming waves should be improved and, to
allow for a better beach, the size of the domain should be enlarged. See chapter 6 for
suggestions on how to achieve this.

4The term linear is used here because the mean horizontal drift force, a second order quantity, is
completely determined by first order quantities.



Chapter 5

Parallelisation and other
computational aspects

HYPAN was originally written to be run on a vector computer, originally a Cray
Y-MP and later a Cray C90. It used only one CPU on those machines. On the Cray
C90 HYPAN was able to run at 500 Mflops of a peak of 1 gigaflops. At the end of
2000 the Cray C90 was taken out of production. It was replaced in the middle of
2001 by two 512 processor Origin 3800 systems from Silicon Graphics. It uses MIPS
R14000 processors running at 500 MHz, with one gigabyte RAM per processor. The
performance of HYPAN on one processor of TERAS, as the new supercomputer was
called, was originally one-third of the performance on one CPU of the Cray C90.
There was a clear need to parallelise our code. Using domain decomposition, already
implemented in HYPAN, one could divide the total domain into several subdomains
each running on their own CPU. However, splitting up the free surface into differ-
ent domains results in one-sided differences along the boundaries of those domains.
Domain decomposition is therefore only useful when the computational domain can
be made up of relatively large blocks. For the diffraction calculations we planned
to do, we needed at least one large domain that could not be split up into smaller
domains. Parallelisation within a domain was needed. When several domains would
be used, in principle, one would still be able to run them in parallel using MPI. A
grant from NCF enabled Willem Vermin from SARA to work on this parallelisation
of HYPAN [29].

In this chapter we will describe that parallelisation effort together with some
related information. We start with a list of where what kind of work is done in
HYPAN. Then we ask ourselves how we can do it faster, leading naturally to the
parallelisation effort.

5.1 Computational work

Figure 5.1 gives a summary of the computational work that HYPAN has to do. Most
of the program code deals with computations that are of linear order. Most of the
computation time is spent in a few routines that do computations of quadratic order.

141
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______________________________________________________________________

Read input
Allocate memory
Determine initial boundary conditions

RK-loop:

Calculate geometry
Calculate influence coefficients: dipole and source coefficients:

CFD*phi + CFS*phn = 0; 2N unknowns, N equations
Build system matrix AA from half of the columns of CFD and CFS
Calculate RHS:

multiply other columns of CFD and CFS with known phi and phn
Precondition AA: diagonal scaling
Solve the system: iterative solver: matrix vector products
When free floating body:

Calculate equations of motion matrix
Extend system matrix AA
Calculate RHS
Precondition AA
Solve the system

Calculate new boundary conditions

______________________________________________________________________

Figure 5.1: Pseudo listing of main computational work.
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Those few computations are:

1. Initialising the three N by N matrices: AA, CFD, and CFS.

2. Filling the two coefficients matrices (CFD and CFS): for the zeroth order of the
dipole coefficients a number of atan function calls are needed for each matrix
element. In a loop over all networks there is a loop over all panels of the network
and for each of those panels there is a loop over all collocation points.

3. Building the linear system: half of the columns of the dipole and source coeffi-
cients matrices are copied into the system matrix AA, the other half is matrix
vector multiplied with the known boundary conditions to form the right-hand
side.

4. Preconditioning the linear system using diagonal scaling: multiply all elements
of the system matrix with the applicable value.

5. Solving the linear system with an iterative Conjugate Gradient Squared (CGS)
method. The work is done by two matrix vector multiplications per iteration,
multiplying the rows of the system matrix with a vector.

6. Extending the system matrix in case of free floating bodies. This is of the order
of N*MNFB and MNFB*MNFB, where MNFB is the number of panels on the
body.

When there are free floating bodies an extra linear system has to be solved, ∇2φt =
0. It uses the same system matrix except for some additions. On the wetted surface
of the body not φ or φn is given, but the relationship between the two: the equations
of motion. This means that for the panels on the body both φ and φn are unknown,
but that there is an extra equation for each body panel. The system matrix used
for ∇2φ = 0 is thus extended with a column of dipole influence coefficients for every
panel on the body. To compensate for these extra unknowns an extra row is added
for every panel on the body to satisfy the equations of motion. The memory for this
large system matrix is allocated in the beginning and the smaller system matrix is
put in there in such a way that it does not need to be reshuffled to be part of the
larger system matrix.

5.2 How to speed things up

We need to speed things up. The most thorough way to do this is to change the
computational order of the construction and solving of the linear system. This has
been done using domain decomposition and it can be done by using cluster decom-
position. The problem with domain decomposition is how to connect the different
sub domains without introducing a discontinuity to the waves, for example because
of one-sided discretisations. This is why the already implemented domain decomposi-
tion in HYPAN was not able to solve our current speed problems. Introducing cluster
decomposition or fast multipole acceleration into an existing higher order boundary
integral method is complicated. It has recently been done by [13]. One of the prob-
lems is the accuracy, especially for very high waves it is necessary to force a total
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solid angle of 4π, see Broeze. Whether it is necessary for more moderate waves is
not clear. The far field approximations that are available in the current code show
some undesirable effects for the current grid setup. Whether this is a problem with
this specific implementation remains to be investigated. In the meantime all influence
coefficients are calculated with the analytical expressions from Romate. This is on
TERAS a factor of three more expensive than a typical mix of far field approximations
and analytical expressions.

Dividing the available work between as many processors as possible is also an
effective way to improve the turnaround time of your calculations. The most trivial
form of parallelisation is to make sure that you have a large number of calculations
to do and give them one processor each. However, for development work it is very
preferable to have the results of one calculation as soon as possible. And of practical
interest: single system images running on hundreds of processors tend to be very
unstable, a calculation that takes a week has a large chance of being stopped. The
main computational work in HYPAN consists of a loop over all panels which calculates
for each iteration a loop over all collocation points. It should be easy to divide those
last loops between several processors.

5.3 Parallelisation

5.3.1 Open MP or MPI?

Open MP (Open specifications for Multi Processing) is a specification for a set of
compiler directives, library routines, and environment variables that can be used to
specify shared memory parallelism in Fortran and C/C++ programs. Basically, you
take a serial program code in which you insert compiler directives around the code
that you would like to be run in parallel. These compiler directives can also be used
to specify scheduling policy and to specify which variables are private to the threads.

MPI (Message Passing Interface) is a library specification for message passing.
When using message passing all processes run from the beginning according to the
same program code which includes statements about which process needs to do what.
All data allocation is done per process, each process gets its own local collection of
data and there is no global data. From this it is obvious that with MPI one has
very precise control over where what data is stored and how and when processes
communicate with each other to exchange results or data. This at the cost of having
to think for every data structure about how to distribute it between the different
processes and of having to specify explicitly how the processes exchange their data.
In other words: there is very precise control, but you have to use it and you have to
use it for the whole program.

Open MP on the other hand uses a shared memory programming model. If the
underlying hardware needs message passing for this it is implemented, but hidden
from the user. This means that one can start with one master thread running the
program code and only start up more threads at the moments when they are useful.
And only in those places one has to think about private variables, scheduling options,
critical sections, locks, etc. This makes it possible to incrementally parallelise a serial
program. If there are only changes in the source code in relatively few places, the
readability and thus the maintainability of the code does not really change, especially
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because these changes are mostly relatively small. Of course, this ease of use one gets
at the expense of having less opportunities to optimise to perfection. But as long as
that is not needed it is an excellent idea to use Open MP to parallelise an existing
serial program.

In the case of HYPAN we use a boundary integral formulation which means that
for N unknowns we get a dense system matrix of N*N elements. Most of the source
lines are spent on manipulating data structures of order N and most of the time is
spent on manipulating data structures of order N*N. This kind of situation is ideal
for the Open MP approach.

5.3.2 Principles and problems

TERAS has a nonuniform memory access architecture. This means that each CPU
(or better: node) has an amount of memory (one gigabyte in case of TERAS) placed
nearby. The total main memory consists of all those local pieces of memory together.
The nodes are connected in some hierarchical fashion so that all memory positions
are reachable from each CPU within a few hops across the nodes. Because each hop
takes time, the time to reach a memory location far away takes much longer than to
reach a local memory location. These node dependent memory access times give this
architecture its name. Open MP presents the user a global shared memory, access to
the memory of other nodes is implemented transparently for the user, it only takes
more time. To achieve reasonable performance it is necessary that each node has the
data that it uses most nearby in its local memory. Open MP itself does not provide
any facility for this however. Instead the manufacturer of a nonuniform memory
access machine has to think of something. In case of TERAS there is a First Touch
Principle: the node that references a particular page of memory first gets it into its
local memory (as long as there is enough of it).

When several processors try to reach the same memory location at the same time
there can be a problem. Just reading the value is not a problem, but if one of the
processors wants to write to the memory location the results depend on which one
was first. Even when both processors perform the same associative operation on the
contents the results can still dependend on their relative timing. For updating a pro-
cessor takes the current value from the memory location and after having performed
the operation on it the processor puts it back, but if in the meantime an other pro-
cessor took the value for processing the update of the first processor will be lost when
the second processor writes its results back. Such a case, where the results depend
on the relative timing of the different processors, is called a race condition.

Open MP provides several mechanisms to deal with such race conditions. The
first one is a critical section. When a part of the code is declared as being a critical
section there is at any one time only one thread allowed to be executing the code
inside that section. This is very easy to use, but it is not very parallel. Another
mechanism is the use of locks. A lock is a user declared variable which can be set by a
special subroutine and unset by another special subroutine. When updating a matrix
in an overlapping way one can for example associate each column of the matrix with a
lock. Before updating part of such a column one first tries to set the associated lock,
this only succeeds when the lock is free. If the lock is not free one can try to update
another column. After finishing updating a certain column the associated lock is to
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be unset again. This is less easy to use, but it can allow more than one thread to
work in parallel on the same section, only blocking other threads where needed.

5.3.3 Implementation

Every processor needs to do his share of work on the three big N*N matrices CFS,
CFD, and AA. To do that efficiently every processor needs to have his part of each
matrix in his local memory. Using the First Touch Principle this is accomplished by
letting each processor initialise his own part of those matrices to zero.

For the calculation of the influence coefficients matrices CFS and CFD the influ-
ence of every panel on each collocation point is calculated. Each panel has its own
column in the CFS and CFD matrices. The calculation of those columns is distributed
over all processors, each processor calculates its own columns. However, because of
the higher order discretisation of the boundary integral every panel not only con-
tributes to its own column, but also to the columns of his eight neighbours. This
means that every column is possibly updated by several processors at once. This is
an unacceptable race condition. To prevent this the influence coefficients per panel
are first written to local scratch arrays, one for each coefficients matrix and both 9
columns wide. After that those local scratch columns are written to the coefficients
matrices using locks per column. If a column is locked another column is tried until
all columns have been done.

To solve the linear system first the system matrix and the right-hand side have to
be constructed. The system matrix AA consists of those columns of CFD and CFS
for which the associated φ of φn is unknown. Each processor copies his unknown
columns into his part of the system matrix. The remaining columns of CFD and
CFS are matrix vector multiplied with the known φ and φn to form the right-hand
side. The matrix vector multiplies involve a summation along the rows of the matrix;
unfortunately the elements in such a row are not neighbours in memory. All matrix
vector multiplies in the code are parallelised as follows. Each processor multiplies his
part in every row with the corresponding part of the vector and puts the results into
a local scratch array. Every processor now has a contribution to every element of the
the global right-hand side in his local scratch array. To add up all those contributions
the global right-hand side is divided in as many pieces as there are processors. Each
piece is protected with a lock. The processors try to update all pieces until the work
is done. The system is solved using CGS as an iterative solver. The work is done by
two matrix vector multiplies per iteration. Typically about 30 iterations are needed
when using 9000 panels.

When there is a floating body not only ∇2φ = 0 needs to be solved but also
∇2φt = 0. The system matrix for the second equation is equal to the system matrix
for the first equation except for MNFB extra columns from CFS and MNFB extra
rows from the equations of motion coupling the 2*MNFB unknowns on the floating
body. In the current implementation the largest matrix is divided over all processors,
giving each processor a group of consecutive columns. When solving the large system
all processors work on their part of the matrix, when solving the smaller system all
processors still work on their part of the largest matrix and some will therefore be idle.
This is not too much of a problem, because MNFB is typically less than 30 percent of
the total number of panels. However, when building the system matrix some influence
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coefficients columns will have to move across nodes, because a processor’s part of the
AA matrix does no longer correspond perfectly to the parts that the same processor
holds of the CFS and of the CFD matrix. The results do not indicate that this has
to change, but it can be changed if needed.

5.3.4 Results

To show the effect of the parallelisation four different cases are considered. The first
two cases are based on the fixed cylinder calculations from chapter 3, one using 9000
panels and one using 30,000 panels. The other two cases are based on the floating
sphere calculations from chapter 4, one using 7000 panels and one using 20,000 panels.
The two calculations with the largest grids used one time step and the other two used
10 time steps. For each calculation there are plots giving the speed up as a function
of the number of processors used. There are separate plots for the speed up of the
whole calculation, of the calculation of the coefficients, of the solution of the linear
system, and of the matrix vector multiplies. All runs were run in normal production
time, but some runs were run in a more busy environment than the others. Some
were run during the very quiet Easter holidays of 2003. On TERAS a job gets the
number of processors it requests and the associated local memory. It is not guaranteed
however that those processors are near to each other1, especially when the system is
almost full. It is also not guaranteed that others are not using parts of your local
memory (but this should be considered to be a bug). When processors are not near
to each other it is possible that the communication of others runs through your part
of the system. All this means that even while in principle you get exclusive access
to the requested processors the activity of others can disturb the efficiency of your
calculations.

Figure 5.2 shows the 9000 panel cylinder case. With 60 processors we have a
maximum total speed up of 40. For more than 60 processors the speed up flattens until
it rises again when using more than 100 processors. Notice the large bandwidth of the
results for more than 20 processors. The speed up of the calculation of the influence
coefficients shows the same general picture, although the bandwidth is smaller and
the speed up is slightly larger. The speed up of the iterative solver shows a very broad
bandwidth. During the Easter holidays it reached a maximum speed up of 36 while
using 64 processors; using more processors gave a lower speed up. In normal busy
operation the speed up is very small: it has a maximum of around 10. Using more
than 40 processors the minimum total speed up is about 20. In quiet times the solve
and the calculation of the coefficients are in balance, in busy (normal) times the solve
is the bottleneck.

Figure 5.3 shows the 30,000 panel cylinder case. Using 60 processors we have a
maximum total speed up of 33, which is less than for the 9000 panels case. This is
probably a cache effect. The bandwidth is slightly less, but that could be because of
different circumstances. The speed up does not flatten using up to 128 processors.
The speed up of the calculation of the coefficients shows the same picture. The
maximum speed ups for the solve are lower than those for the 9000 panel case using
the same number of processors. But because the speed ups are not flattening the

1In terms of the number of hops, or the number of CPU cycles, that are needed to reach each
others local memory.
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maximum speed up reached is almost 70. During quiet times and for these matrix
sizes the solve is not the bottleneck any more.

Figure 5.4 shows the 7000 panel sphere case. When using 60 processors the total
speed up is almost 30. But for more processors the maximum speed up stays more or
less the same. The bandwidth is large. The speed up of the coefficients calculation
shows a very small bandwidth. After almost flattening the speed up increases again
to more than 50 using 128 processors. At 60 processors the speed up is slightly less
than 40. The speed up of the solve reaches a maximum of almost 30 at 60 processors,
but the bandwidth is very large: in busy times the speed up stays below 10. The
solve is clearly the bottleneck, especially in busy times. The total speed up can be as
low as 18 at 60 processors.

Figure 5.5 shows the 20,000 panel sphere case. The total speed up is 30 using 60
processors. For more processors the total speed up seems to flatten. The speed up of
the calculation of the coefficients shows a similar picture except that the speed up is
40 when using 60 processors and that the flattening for higher numbers of processors
is slightly less. The speed up of the solve is around 30 using 60 processors. In quiet
times the speed up then continues to increase up to a speed up of almost 50 using
128 processors. In more busy times the speed up of the solve seems to have a ceiling
of around 30.

Summarising we can say that when the system load on TERAS is low we can
have a speed up of between 30 and 40 at 60 processors, but when the system load is
normal the speed up can be around 20. For the calculations with the 30,000 panels
and the fixed cylinder the calculation of the influence coefficients is the bottleneck, in
the other cases the bottleneck is the solving of the linear system. When system load
is low the speed up of the calculation of the influence coefficients and the speed up of
the solving of the linear system are reasonably in balance, but on a busy system the
speed up can be halved, mainly caused by a smaller speed up of the solve.

5.4 Conclusion

On the Cray C90, using one processor, the calculations using 9000 panels and the
fixed cylinder as done in chapter 3 took one week for four periods or 400 times
steps. It is obvious that then there is little room for trial and error. On the new
Silicon Graphics Origin 3800 the same calculations can be done in 20 hours using
16 processors or between 6 and 10 hours for 64 processors. As already remarked in
the previous chapters it would be very nice to be able to use even larger amounts of
panels. An increase in the number of panels of about a factor of 4 will allow for a
domain that is twice as large and a resolution near the cylinder that is also twice as
large. This brings us to the calculations with the 30,000 panels and the fixed cylinder.
This would take again almost one week to calculate 400 times steps. Probably the
time step also needs to be reduced with a factor of two. This means that either new
hardware is needed for this kind of calculations or better algorithms. The new Silicon
Graphics Altix system at SARA consisting of 416 Itanium 2 processors could give
some improvement, but at the moment the speed increase per processor of a factor of
two till three for most applications is compensated by a less efficient implementation
of Open MP. This should improve however in the near future.
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Figure 5.2: The speed up as function of the number of processors used for the calcu-
lations using 9000 panels and a fixed cylinder.
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Figure 5.3: The speed up as function of the number of processors used for the calcu-
lations using 30,000 panels and a fixed cylinder.
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Figure 5.4: The speed up as function of the number of processors used for the calcu-
lations using 7000 panels and a floating sphere.
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Figure 5.5: The speed up as function of the number of processors used for the calcu-
lations using 20,000 panels and a floating sphere.



Chapter 6

The future

The current capabilities of HYPAN for the calculation of diffraction problems follow
from the contents of this thesis. The agreement of the results from HYPAN with
theory and experiments is good. The main bottleneck for the accuracy and for the
type of calculations that can be done is the grid that can be used. This is both limited
by the number of panels that can be calculated in a reasonable amount of time and
by the specific characteristics of the grid implementation.

As stated earlier in chapter 2, the number of panels in the circumferential direction
is the same for all networks. The total number of panels needed depends therefore
largely on the choice of this number. With 80 panels in the circumference the total
number of panels will be between 5000 and 10,000. To give an indication, a calculation
with a free-floating body using 6800 panels takes about 1500 seconds for one time step
on one MIPS R14000 running at 500 MHz. It follows that using (much) more than
80 panels the circumference is not feasible. The memory requirements are relatively
mild. Having 3 large matrices of size N2 filled with doubles needing 8 bytes each, the
amount of memory needed is to very good approximation 24N2 bytes. In case of 5000
panels the amount of memory needed is therefore 600 MByte. For 10,000 panels it is
2.4 GByte.

As an example, we calculate the minimum number of panels needed when using
80 panels in the circumference. The five bottom networks need 1 * (80/4)*(80/4) +
4 * (80/4)*4 = 720. For the height of the domain, in case of ‘infinite’ depth, at least
10 panels are needed. This results in 80*10 = 800 panels for the domain mantle. In
the radial direction of the free surface you need 30 panels, which results in 80*30 =
2400 panels for the free surface. For an object the minimum amount of panels is a
bottom set of networks, see above, but now with 1 * (80/4)*(80/4) + 4 * (80/4)*6 =
880 panels. This adds all up to a minimum total number of panels of 4800, say 5000
panels.

It is good to realise at this point that objects with water cross-sections having
large aspect ratios are more difficult to deal with then objects that have a water
cross-section with a small aspect ratio. This is because the piece in the middle takes
extra grid points at the same resolution and because the beach and especially the
Sommerfeld radiation condition prefer a point source as the origin of the diffracted
waves.

157
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Since the number of panels in the circumferential direction is limited, the size of
the domain is limited by the number of panels per wavelength needed to resolve the
smallest incoming wavelength, see equation (3.1). The length of the largest incoming
wavelength is limited by the quality of the absorbing boundary conditions, or better
how well you can simulate an infinite domain. Using a Sommerfeld radiation condition
a domain radius of at least a quarter of a wavelength is needed and perhaps more.
A domain radius of half a wavelength worked for the calculations in chapter 3. A
beach without a Sommerfeld radiation condition needs at least half a wavelength to
reduce the reflection to around 5 percent; the distance between the beach and the
object should not be too small, almost a wavelength would be ideal, using less than
a quarter of wavelength would mean solving a different problem, a problem with a
different kind of water. The result of all this is that the range of incoming wave
frequencies that can be calculated for a given object is limited. This was one of the
problems with the calculations done in chapter 4.

The other main contributor to the computation time that is needed for the calcu-
lations, is the number of periods that needs to be calculated. For the regular waves in
chapter 3 10 periods were enough. In chapter 4 we try to mimic a real mooring set up.
Before the mooring system has settled down a large number of periods has passed, 20
periods should be enough, we took 30 periods to be certain. When using the average
total force instead of the displacement of the mooring system the number of periods
could probably be limited to around 10. When one wants to calculate irregular waves
the number of smallest periods that needs to be calculated is much larger.

6.1 Solving only for the difference with the incom-
ing wave

Ferrant, see e.g. [8], uses the analytical description of Rienecker & Fenton for the
incoming wave to separate the velocity potential into one term for the incoming wave
and one term for the rest. This does not put any restrictions on the total potential.
As long as the velocity potential for the incoming wave satisfies the Laplace equation
for arbitrary wave elevations the remaining velocity potential term can be solved
separately. Start with the total potential written as the sum of the incoming wave
potential and the remaining potential and then replace all references to the incoming
wave potential with the analytical description. Do the same for the wave elevation.
Evaluating all these references explicitly, including any derivatives, leads to a problem
that only depends on the remaining or diffraction potential and on the extra wave
elevation due to the diffraction. A discretisation of this problem only has to resolve
that diffraction potential. This means that further away from the object the resolution
in the circumferential direction becomes less and less important. Furthermore, the
resolution in the radial direction further away from the object does only need to
resolve the diffracted waves well enough to allow them to be damped away. This
procedure would allow us to remove the limit on the domain size caused by having to
resolve the incoming wave. The domain can be as large as is useful for absorbing the
diffracted waves and the fixed circumferential resolution is much less of a problem.
It would therefore be possible to calculate a larger range of frequencies. In principle,
this approach can also be used in the presence of floating bodies, the implementation
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however will be a major bookkeeping operation.

6.2 Lowering the computational complexity of the
problem

As said earlier in chapter 5, the computational complexity of both the construction
of the linear system and the solving of that system are of order N2. Nowadays
there are several methods to exploit the idea that to calculate the influence of a
number of panels relatively far away from the field point, but close to each other,
one can group those panels together neglecting the details within the group that
will have a negligible influence at that distance. It is possible to construct such a
hierarchical structure of groups that the calculation, the storage and the evaluation
of the resulting influence coefficients are almost of order N. We will refer to this kind
of methods as cluster decomposition methods. Domain decomposition can be seen as
a simple form of cluster decomposition, because the idea is similar, although there
is no real hierarchical structure. Normally we do not consider it as such however.
The classic example is the Fast Multipole Algorithm, first developed by Greengard
and Rokhlin [14] for the N-body problem with Coulomb or gravitational interactions.
These ideas have also been applied to calculations of water waves using potential
theory, for example by Kring, Korsmeyer, et al. [18]. Their higher order nonlinear
version still had to be written however.

Having a computer code that is capable of performing stable calculations of highly
nonlinear water waves, it is inconvenient to replace the whole Laplace solver, since
that would imply new discretisations and new stability problems. Instead it would be
better to keep the method the way it is, only replacing the matrix vector multiplies
in the iterative solver (including the calculation of the influence matrices) by a more
efficient approach to get approximately the same resulting vector. Recently such an
approach has been taken by Fochesato and Dias [13] based on a three-dimensional
boundary element method for calculating highly nonlinear water waves developed by
Grilli et al. [15]. This is not a trivial undertaking, but they managed to decrease the
computation time by a factor of 6 for a problem using 6000 nodes. They claim that
their algorithm could be run in parallel. It remains to be seen whether this approach
can be incorporated into HYPAN without sacrificing the current stability, but it seems
to be worth the effort to try.

6.3 Dealing with irregular waves

After implementing the suggestions in the previous two sections one can start to think
about calculating the fully non-linear diffraction of irregular wave fields. But even
then the computational requirements will remain very high. The calculation of very
long time series will not be feasible, instead only some small interesting time intervals
of a complete time series should be considered. To represent an irregular incoming
wave field the Rienecker & Fenton approach is not suitable. We do need however
an incoming wave field built up out of analytical expressions satisfying the Laplace
equation, because we have to be able to evaluate the velocity potential, the wave ele-
vation, and their derivatives at arbitrary positions. The potential and its derivatives
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even above the incoming wave elevation. One way of accomplishing this is to use a
two-dimensional time-domain pseudospectral method like Ferrant et al. [12]. Using a
three-dimensional pseudospectral method will even allow for diffraction calculations
with short-crested wave systems.

6.4 Conclusion

The above suggestions can be implemented in the near future. This will enable the
further exploration of the nonlinear effects in wave diffraction problems. Especially
in more practical situations where the water waves are irregular, and where the fixed
or floating objects have water cross-sections with larger aspect ratios and with more
corners.



Appendix A

A.1 Broeze’s equation 6.22

The errors near non-smooth boundaries caused by one-sided discretisations of terms
in the time-dependent boundary conditions and by some ignored higher order terms
in the expressions for the influence coefficients (see also Romate [25]) are instable in
time for non-linear computations. To control these ill behaved errors an extra error
is introduced that makes the total error well-behaved. This modified dynamic free
surface boundary condition is described by Broeze’s equation 6.22, only to be used in
the first row of collocation points near a non-smooth boundary:

φt = a
[
(φs⊥)lat.bound. − (φs⊥)free surf.

] − 1
2

(∇φ)2 − g(z − z0) (A.1)

Here s⊥ is the tangential coordinate on the free surface perpendicular to the inter-
section line. The parameter a should be positive, but small to prevent inaccuracies.
We used a=0.05. For solutions of the continuous problem the velocities φs⊥ on the
intersection line calculated using data from the free surface and calculated using data
from the lateral boundary should be equal. For the discrete problem the difference is
a measure of the truncation errors involved. The exact solution is not influenced, but
possible numerical deviations are suppressed.

A.2 Calculation of α and β from free decay tests

The equation for free heave motion is

(m + a)z̈ + bż + cz = 0 (A.2)

with a the added mass coefficient and b the damping coefficient for heave. This can
be rewritten into the following convenient form:

z̈ + 2νż + ω2
0z = 0 (A.3)

with the damping parameter

ν =
b

2(m + a)
(A.4)
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and the characteristic angular frequency in the absence of damping

ω0 =
√

c

m + a
(A.5)

The solution for equation (A.3) is

z(t) = Ae−νt cos(ωt + ϕ) (A.6)

where
ω =

√
ω2

0 − ν2 (A.7)

It is convenient to normalise a and b and to call the result α and β:

α =
a

m
(A.8)

β =
b

mω
(A.9)

We can express α and β in terms of ω and ν for a sphere of radius r and mass
m = 1

2ρ 4
3πr3:

α =
3g

2r

1
ω2 + ν2

− 1 (A.10)

β =
3g

r

ν

(ω2 + ν2)
3
2

(A.11)

A.3 Implementation of the mooring system

In the implementation of the mooring system an error was made. It is shown below
however that the effect on the results presented in chapter 4 is negligible. In equa-
tion (2.37), giving the body boundary condition, the mooring force was not included.
It wás included in the calculation of the acceleration:

�ab = m−1 �Fp − gẑ + amooring ŷ (A.12)

with

amooring = −ω2
0,m(y − y0) − 2Dω0,mẏ (A.13)

D = 0.33 (crit. damp. coeff.) (A.14)
ω0,m = 0.01 rad/s (eigenfreq. mooring) (A.15)

and with �Fp following from the integration of the pressure. This pressure depends
on φt which follows from the solution of ∇2φt = 0. But, as said before, the body
boundary condition used to solve this equation did not include the mooring force and
the resulting φt therefore does not include the reaction forces of the water in response
to that mooring force. In equilibrium we should have had

< atotal > = < m−1Fp > + < amooring >= 0 (A.16)
= m−1 < Fdrift > +m−1 < FFm > + < amooring >= 0 (A.17)
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where the average reaction forces m−1 < FFm > due to the mooring force Fm were
negligible. Therefore

Fdrift = m < amooring >= −mω2
0,m(< y > −y0) (A.18)

But if the average reaction forces would have been negligible if the mooring system
had been implemented correctly, then also the absence of those forces in the current
implementation should be negligible. This means that equation (A.18) is still valid.

A.4 Components of the mean horizontal drift force

From the thesis of Pinkster [22] we have the following expressions for the contributions
to the mean horizontal drift force for a sphere submerged down to its middle. These
expressions depend only on the mean first order quantities and are accurate up to
second order. The superscript (1) denotes first order quantities, ζr is the relative wave
height with respect to the centre of mass of the sphere, S0 is the mean wetted surface,
and �X is the displacement vector from the equilibrium position.

F mean
I =

∮
mean WL

1
2
ρg(ζ(1)

r )2 (n̂ · k̂) dlmean (A.19)

F mean
II =

∫∫
S0

−1
2
ρ(∇φ(1))2 (n̂ · k̂) dSmean (A.20)

F mean
III =

∫∫
S0

−ρ( �X(1) · �∇φ
(1)
t ) (n̂ · k̂) dSmean (A.21)

�k is the wave vector of the incoming wave, thus (n̂ · k̂) has the opposite sign as
the longitudinal direction cosine used by Pinkster, resulting in the same overall sign
convention.



164 A.



Bibliography

[1] Ballast, A., Eggermont, M., Zandbergen, P.J., Huijsmans, R.H.M.: “Free Surface
Elevation near Round and Square Cylinders in Moderate Non-linear Deep Water
Waves”, 2002, Proceedings of the 17th International Workshop on Water Waves
and Floating Bodies, Cambridge, p.p. 9 - 12.

[2] Berkvens, P.J.F.: “Floating bodies interacting with water waves”, PhD-thesis,
1998, University of Twente, Enschede, The Netherlands.

[3] Broeze, J.: “Numerical Modelling of Non-Linear Free Surface Waves with a 3D
Panel Method”, PhD-thesis, 1993, University of Twente, Enschede, The Nether-
lands.

[4] Contento, G., Francescutto, A., Lalli, F.: “Nonlinear Wave Loads on Single Ver-
tical Cylinders: Pressure and Wave Field Measurements and Theoretical Predic-
tions”, Proceedings of ISOPE ’98, Vol. 3, p.p. 526 - 534.

[5] Daalen, E.F.G. van: “Numerical and Theoretical Studies of Water Waves
and Floating Bodies”, PhD-thesis, 1993, University of Twente, Enschede, The
Netherlands.

[6] De Kat, J.O., Thomas, W.L.,: “Broaching and capsize model tests for validation
of numerical ship motion predictions”, 1998, Procedings of the 4th International
Workshop on Ship Stability.

[7] Fekken, G.: “Numerical Simulations of Free-Surface Flow With Moving Rigid
Bodies”, PhD-thesis, 2004, University of Groningen, The Netherlands.

[8] Ferrant, P.: “Time Domain Computation of Non-Linear Diffraction Loads Upon
Three Dimensional Floating Bodies”, Proceedings of ISOPE ’95, Vol. 3, p.p.
280-288.

[9] Ferrant, P.: “Nonlinear wave-current interactions in the vicinity of a vertical
cylinder”, 1997, Proceedings of the 12th International Workshop on Water Waves
and Floating Bodies, Marseilles, Molin, B.(ed.), p.p. 65-69.

[10] Ferrant, P.: “Run-up on a Cylinder due to Waves and Current Potential Flow
Solutions with Fully Non-Linear Boundary Conditions”, Proceedings of ISOPE
’98, Vol. 3, p.p. 332-339.

165



166 Bibliography

[11] Ferrant, P.: “Seakeeping simulations in non linear waves”, 1999, Proceedings of
the 7th International Conference on Numerical Ship Hydrodynamics, Nantes.
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